Skip to main content
Log in

Volume Approximations of Strongly Pseudoconvex Domains

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

In convex geometry, the Blaschke surface area measure on the boundary of a convex domain can be interpreted in terms of the complexity of approximating polyhedra. This approach is formulated in the holomorphic setting to establish an alternate interpretation of Fefferman’s hypersurface measure on boundaries of strongly pseudoconvex domains in \(\mathbb {C}^2\). In particular, it is shown that Fefferman’s measure can be recovered from the Bergman kernel of the domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Arnold, V.I.: Mathematical Methods of Classical Mechanics, vol. 60. Springer, New York (1989)

    Google Scholar 

  2. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput. 16, 78–96 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barrett, D.: A floating body approach to Fefferman’s hypersurface measure. Math. Scand. 98, 69–80 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barrett, D., Hammond, C.: Remarks on variational problems for Fefferman’s measure. Preprint (2011). arXiv:1109.5882

  5. Blaschke, W.: Vorlesungen Über Differentialgeometrie II: Affine Differentialgeometrie. Springer, Berlin (1923)

    MATH  Google Scholar 

  6. Böröczky Jr., K.: Approximation of general smooth convex bodies. Adv. Math. 153, 325–341 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Böröczky Jr., K., Ludwig, M.: Approximation of convex bodies and a momentum lemma for power diagrams. Mon. Math. 127(2), 101–110 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Capogna, L., Danielli, D., Pauls, S.D., Tyson, J.T.: An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  9. Fefferman, C.: Parabolic invariant theory in complex analysis. Adv. Math. 31, 131–262 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gruber, P.M.: Asymptotic estimates for best and stepwise approximation of convex bodies II. Forum Math. 5, 521–538 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Gruber, P.M., Wills, J.M.: Handbook of Convex Geometry, vol. A. North Holland, Amsterdam (1993)

    MATH  Google Scholar 

  12. Hörmander, L.: An Introduction to Complex Analysis in Several Variables. North-Holland, Amsterdam (1990)

    MATH  Google Scholar 

  13. Krantz, S.G., Parks, H.R.: Geometric Integration Theory. Springer, New York (2008)

    Book  MATH  Google Scholar 

  14. Leichtweiß, K.: Affine Geometry of Convex Bodies. Johann Ambrosius Barth, Heidelberg (1998)

    MATH  Google Scholar 

  15. Ludwig, M.: Asymptotic approximation of smooth convex bodies by general polytopes. Mathematika 46(1), 103–125 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, New York (1986)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the NSF under Grant No. DMS 1161735. The author is grateful to her adviser, David Barrett, for suggesting this problem to her, and supporting this work with constant encouragement and timely mathematical insights. She would also like to thank Dan Burns for some very useful discussions. Lastly, the author wishes to thanks the referee for his/her detailed comments that have vastly helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Purvi Gupta.

Appendix: Power Diagrams in the Heisenberg Group

Appendix: Power Diagrams in the Heisenberg Group

1.1 The Euclidean Plane

Let \(D(a;r)\subset \mathbb {R}^2\) be a disk of radius r centered at \(a\in \mathbb {R}^2\). The power of a point \(z=(x,y)\in \mathbb {R}^2\) with respect to \(D=D(a;r)\) is the number

$$\begin{aligned} {\text {pow}}(z,D)=|z-a|^2-r^2. \end{aligned}$$

Note that if z is outside the disk D, then \({\text {pow}}(z,D)\) is the square of the length of a line segment from z to a point of tangency with \(\partial D\). Thus, it is a generalized distance between z and \(\partial D\). For a collection \(\mathscr {D}\) of disks in the plane, the power diagram or Laguerre–Dirichlet–Voronoi tiling of \(\mathscr {D}\) is the collection of all

$$\begin{aligned} {\text {cell}}(D)=\{z\in \mathbb {R}^2:{\text {pow}}(z,D)< {\text {pow}}(z,D^*), \quad \forall D^*\in \mathscr {D}\setminus \{D\}\}, \ D\in \mathscr {D}. \end{aligned}$$

If \(\mathscr {D}\) consists of equiradial disks, the power diagram reduces to the Dirichlet–Voronoi diagram of the centers of the disks. In general, the power diagram of any \(\mathscr {D}\) gives a convex tiling of the plane (Fig. 2).

Fig. 2
figure 2

A power diagram in the plane

Power diagrams occur naturally and have found several applications (see [2], for instance). From the point of view of polyhedral approximations, power diagrams (in \(\mathbb {R}^{d-1}\)) are intimately related to the constant \({\text {ldiv}}_{d-1}\) in (1.2) (see [15] and [7] for explicit details).

1.2 The Heisenberg Group

Let \(K(0;\delta )=\{z'\in \mathbb {H}:|z_1|^4+(x_2)^2<\delta ^4\}\) be a Korányi sphere in \(\mathbb {H}\) (see (4.1)). We define the horizontal power of a point \(z'\in \mathbb {H}\) with respect to \(K=K(0;\delta )\) as

$$\begin{aligned} {\text {hpow}}(z',K)= {\left\{ \begin{array}{ll} |z_1|^2-\sqrt{\delta ^4-(x_2)^2}, &{} \text {if}\ |x_2|\le \delta ^2;\\ \infty , &{} \text {otherwise}. \end{array}\right. } \end{aligned}$$

Note that \(K_c:=K\cap \{x_2=c\} \) is a (possibly empty) disk in the \(\{x_2=c\}\) plane, and \({\text {hpow}}((z_1,x_2),K)={\text {pow}}(z_1,K_{x_2})\), where the right-hand side—being a generalized distance—is set as \(\infty \) when \(K_{x_2}\) is empty. \({\text {hpow}}\) is then extended to all Korányi spheres to be left-invariant under \(\cdot _{\scriptscriptstyle \mathbb {H}}\) (defined in Sect. 4). For a collection \(\mathscr {K}\) of Korányi spheres in \(\mathbb {H}\), define the horizontal power diagram or Laguerre–Korányi tiling of \(\mathscr {K}\) to be the collection of all

$$\begin{aligned} {\text {hcell}}(K)=\left\{ z'\in \bigcup _{K\in \mathscr {K}}K:{\text {hpow}}(z',K)<{\text {hpow}}(z',K^*), \quad \forall K^*\in \mathscr {K}\setminus \{K\}\right\} , K\in \mathscr {K}. \end{aligned}$$

Then, \({\text {hcell}}(K)\subset \;K\), for all \(K\in \mathscr {K}\) (Fig. 3).

Fig. 3
figure 3

A \(\{x_1=0\}\)-slice of a horizontal power diagram in \(\mathbb {H}\)

We now give two reasons why this concept is useful for us. Let

$$\begin{aligned}&{\text {dil}}_\xi :(z_1,x_2)\mapsto (\xi z_1,\xi ^2 x_2),\\&{\text {dil}}_{w',\xi }:z'\mapsto w'\cdot _{\scriptscriptstyle \mathbb {H}}{\text {dil}}_\xi (-w'\cdot _{\scriptscriptstyle \mathbb {H}}z') \end{aligned}$$

be the dilations in \(\mathbb {H}\) centered at the origin and \(w'\), respectively. Then,

  1. (1)

    \({\text {dil}}_{w',\xi }(K(w',\delta ))=K(w',\xi \delta )\),

  2. (2)

    \({\text {hpow}}({\text {dil}}_{w',\xi }(z'),K(w',\delta ))=\xi ^2{\text {hpow}}(z',K(w',\xi ^{-1}\delta ))\), and

  3. (3)

    if \(\mathscr {K}=\{K_j:=K(a_j,\delta _j):j=1,\ldots ,m\}\), then, \({\text {dil}}_{a_j,\xi }{\text {hcell}}\big (K_l\big ) \cap {\text {dil}}_{a_k,\xi }{\text {hcell}}\big (K_j\big )=\emptyset \), for all \(1\le l<j\le m\) and \(\xi \le 1\).

Now, consider the Siegel domain \(\mathcal {S}\) and the function \(f_\mathcal {S}\) studied in Sect. 4. The cuts of any \(f_\mathcal {S}\)-polyhedron P over \(J\subset \partial S\) project to a collection \(\mathscr {K}_P\) of Korányi balls in \(\mathbb {C}\times \mathbb {R}\) that form a covering of \(J'\). The (open) facets of P project to the horizontal power diagram of \(\mathscr {K}_P\). This perspective facilitates the proof of

Lemma 6.1

The cuts of \(f_{\mathcal {S}_\lambda }\), \(\lambda >0\), are Jordan measurable and satisfy the doubling property (3.3) for any \(\delta _{f_{\mathcal {S}_\lambda }}>0\) and \(D(t)=(1+t)^3\).

Proof

The Jordan measurability of the cuts is obvious. Now, without loss of generality, we may assume \(\lambda =1\) (the map \((z,w)\mapsto (\lambda z,\lambda w)\) can be used to handle the other cases). Let \(H\subset \partial \mathcal {S}\) be a compact set, \(\{w^j\}_{1\le j \le m}\subset H\), \(\{\delta _j\}_{1\le j \le m}\subset (0,\infty )\) and \(t>0\). For \(j=1,\ldots ,m\), let

$$\begin{aligned}&C_j(t):=C(w_j,(1+t)\delta _j;f_\mathcal {S}),&\\&v^j=(w^j)'=(w_1^j,u_2^j),&\end{aligned}$$

and (see (4.1))

$$\begin{aligned} K_j(t):=C_j(t)'=K\left( v^j;\sqrt{(1+t)\delta _j}\right) . \end{aligned}$$

Consider \(\mathscr {K}=\{K_j(t):1\le j\le m\}\) and the corresponding horizontal power diagram \(\{{\text {hcell}}_j(t)={\text {hcell}}(K_j(t)):1\le j\le m\}\). Then, setting \(dz'=dx_1dy_1dx_2\), we have, by a change of variables and (1), (2) and (3) above, that

$$\begin{aligned}&{\text {vol}}\left( \bigcup _{j=1}^{m}C_j(t)\right) \\&\quad =\int _{\cup _{j=1}^m K_j(t)} \max \limits _{1\le j\le m}\left\{ {\text {Re}}{\sqrt{\delta _j^2-(x_2-u_2^j+2{\text {Im}}z_1\overline{w_1}^j)}}-|z_1-w_1^j|^2\right\} dz'\\&\quad =\int _{\cup _{j=1}^m K_j(t)}\max \limits _{1\le j\le m}\{-{\text {hpow}}(z',K_j(t))\}dz'\\&\quad = -\sum \limits _{j=1}^{m}\int _{{\text {hcell}}_j(t)}{\text {hpow}}( z',K_j(t)) dz'\\&\quad =-(1+t)^2\sum \limits _{j=1}^{m}\int _{{\text {dil}}_{v^j,\frac{1}{\sqrt{1+t}}}({\text {hcell}}_j(t))} {\text {hpow}}\left( {\text {dil}}_{v^j,\sqrt{1+t}}(\zeta ),K_j(t)\right) d\zeta \\&\quad =-(1+t)^3\sum \limits _{j=1}^{m}\int _{{\text {dil}}_{v^j,\frac{1}{\sqrt{1+t}}}({\text {hcell}}_j(t))} {\text {hpow}}\left( \zeta ,K_j(0)\right) d\zeta \\&\quad \le (1+t)^3\int _{\cup _{j=1}^m K_j(0)} \max \left\{ -{\text {hpow}}\left( \zeta ,K_j(0)\right) :1\le j\le m\right\} d\zeta \\&\quad = (1+t)^3{\text {vol}}\left( \bigcup \limits _{j=1}^{m}C_j(0)\right) ,\quad \forall t\ge 0. \end{aligned}$$

\(\square \)

The computations in the above proof also show that

$$\begin{aligned} l_{{\text {kor}}}=\lim _{n\rightarrow \infty }\sqrt{n}\inf \left\{ -\sum \limits _{K\in \mathscr {K}}\int _{{\text {hcell}}(K)}{\text {hpow}}(z',K)dz':I\subset \bigcup _{K\in \mathscr {K}}K,\; \#(\mathscr {K})\le n \right\} , \end{aligned}$$

where I is the unit square in \(\mathbb {C}\times \mathbb {R}\) (see Sect. 4). Our proof of Lemma 4.1 yields bounds for \(l_{{\text {kor}}}\) as follows:

$$\begin{aligned} 0.0003\approx \frac{4\sqrt{2}}{\pi ^23^7}\le l_{{\text {kor}}}\le \frac{5\sqrt{5}\pi }{3\sqrt{2}}\approx 8.2788. \end{aligned}$$

It would be interesting to know if computations, similar to the ones carried out by Böröczky and Ludwig in [7] for \({\text {ldiv}}_2\), can be done to find the exact value of \(l_{{\text {kor}}}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P. Volume Approximations of Strongly Pseudoconvex Domains. J Geom Anal 27, 1029–1064 (2017). https://doi.org/10.1007/s12220-016-9709-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-016-9709-8

Keywords

Mathematics Subject Classification

Navigation