Skip to main content
Log in

Equivariant Alexandrov Geometry and Orbifold Finiteness

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Let a compact Lie group act isometrically on a non-collapsing sequence of compact Alexandrov spaces with fixed dimension and uniform lower curvature and upper diameter bounds. If the sequence of actions is equicontinuous and converges in the equivariant Gromov–Hausdorff topology, then the limit space is equivariantly homeomorphic to spaces in the tail of the sequence. As a consequence, the class of Riemannian orbifolds of dimension \(n\) defined by a lower bound on the sectional curvature and the volume and an upper bound on the diameter has only finitely many members up to orbifold homeomorphism. Furthermore, any class of isospectral Riemannian orbifolds with a lower bound on the sectional curvature is finite up to orbifold homeomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adem, A., Leida, J., Ruan, Y.: Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics, vol. 171. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  2. Borzellino, J.E., Brunsden, V.: The stratified structure of spaces of smooth orbifold mappings. Commun. Contemp. Math. 15(5), 1350018 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brooks, R., Perry, P., Petersen, P.: Compactness and finiteness theorems for isospectral manifolds. J. Reine Angew. Math. 426, 67–89 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Burago, D., Burago, Y., Ivanov, S.: A Course in Metric Geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  5. Burago, Y., Gromov, M., Perelman, G.: A. D. Aleksandrov spaces with curvatures bounded below. Uspekhi Mat. Nauk 47(2(284)), 3–51, 222 (1992). Translation in Russ. Math. Surv. 47(2), 1–58 (1992)

  6. Cheeger, J.: Finiteness theorems for Riemannian manifolds. Am. J. Math. 92, 61–74 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dearricott, O.: A 7-manifold with positive curvature. Duke Math. J. 158(2), 307–346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dixon, L., Harvey, J.A., Vafa, C., Witten, E.: Strings on orbifolds. Nucl. Phys. B 261(4), 678–686 (1985)

    Article  MathSciNet  Google Scholar 

  9. Farsi, C.: Orbifold spectral theory. Rocky Mt. J. Math. 31(1), 215–235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukaya, K.: Theory of convergence for Riemannian orbifolds. Jpn. J. Math. New Ser. 12(1), 121–160 (1986)

    MathSciNet  MATH  Google Scholar 

  11. Fukaya, K., Yamaguchi, T.: The fundamental groups of almost non-negatively curved manifolds. Ann. Math. (2) 136(2), 253–333 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gromov, M.: Groups of polynomial growth and expanding maps. Inst. Hautes Études Sci. Publ. Math. 53, 53–73 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grove, K., Petersen, P.: Bounding homotopy types by geometry. Ann. Math. (2) 128(1), 195–206 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Grove, K., Petersen, P.: Manifolds near the boundary of existence. J. Differ. Geom. 33(2), 379–394 (1991)

    MathSciNet  MATH  Google Scholar 

  15. Grove, K., Karcher, H., Ruh, E.A.: Group actions and curvature. Invent. Math. 23, 31–48 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grove, K., Petersen, P., Wu, J.Y.: Geometric finiteness theorems via controlled topology. Invent. Math. 99(1), 205–213 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  17. Grove, K., Verdiani, L., Ziller, W.: An exotic \(T_{1}\mathbb{S}^{4}\) with positive curvature. Geom. Funct. Anal. 21(3), 499–524 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harvey, J.: \(G\)-actions with close orbit spaces. arXiv:1312.7846 [math.GN] (2013)

  19. Harvey, J., Searle, C.: Orientation and symmetries of Alexandrov spaces with applications in positive curvature. arXiv:1209.1366 [math.DG] (2012)

  20. Kapovitch, V.: Perelman’s Stability Theorem, Surveys in Differential Geometry, vol. XI. Int. Press, Somerville, MA (2007)

    MATH  Google Scholar 

  21. Kirby, R.C., Siebenmann, L.C.: Foundational Essays on Topological Manifolds, Smoothings, and Triangulations. Princeton University Press, Princeton, NJ (1977). With notes by John Milnor and Michael Atiyah, Annals of Mathematics Studies, No. 88

  22. Palais, R.S.: The classification of \(G\)-spaces. Mem. Am. Math. Soc. 36 (1960)

  23. Paulin, F.: Topologie de Gromov équivariante, structures hyperboliques et arbres réels. Invent. Math. 94(1), 53–80 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Perelman, G.: Alexandrov’s spaces with curvatures bounded from below II. http://www.math.psu.edu/petrunin/papers/papers.html (1991)

  25. Perelman, G.: Elements of Morse theory on Aleksandrov spaces. Algebra i Analiz 5(1), 232–241 (1993). Translation in St. Petersburg Math. J. 5(1), 205–213 (1994)

  26. Perelman, G., Petrunin, A.: Extremal subsets in Aleksandrov spaces and the generalized Liberman theorem. Algebra i Analiz 5(1), 242–256 (1993). Translation in St. Petersburg Math. J. 5(1), 215–227 (1994)

  27. Peters, S.: Cheeger’s finiteness theorem for diffeomorphism classes of Riemannian manifolds. J. Reine Angew. Math. 349, 77–82 (1984)

    MathSciNet  MATH  Google Scholar 

  28. Petersen, P.: Riemannian Geometry, Graduate Texts in Mathematics, vol. 171, 2nd edn. Springer, New York (2006)

    Google Scholar 

  29. Proctor, E.: Orbifold homeomorphism finiteness based on geometric constraints. Ann. Global Anal. Geom. 41(1), 47–59 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Proctor, E., Stanhope, E.: Spectral and geometric bounds on 2-orbifold diffeomorphism type. Differ. Geom. Appl. 28(1), 12–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Satake, I.: On a generalization of the notion of manifold. Proc. Natl. Acad. Sci. USA 42, 359–363 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stanhope, E.: Spectral bounds on orbifold isotropy. Ann. Global Anal. Geom. 27(4), 355–375 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Thurston, W.P.: The geometry and topology of 3-manifolds, Lecture notes. http://www.msri.org/publications/books/gt3m/ (1980)

  34. Weinstein, A.: On the homotopy type of positively pinched manifolds. Arch. Math. (Basel) 18, 523–524 (1967)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This research was carried out as part of the author’s dissertation project at the University of Notre Dame, with the ever-helpful advice of Karsten Grove. During that time, the author was supported in part by a grant from the U.S. National Science Foundation. The author is grateful to Vitali Kapovitch and Curtis Pro for interesting and helpful conversations on this subject, and to Karsten Grove for pointing out the possibility of using [15] to prove Proposition 3.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Harvey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harvey, J. Equivariant Alexandrov Geometry and Orbifold Finiteness. J Geom Anal 26, 1925–1945 (2016). https://doi.org/10.1007/s12220-015-9614-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9614-6

Keywords

Mathematics Subject Classification

Navigation