Skip to main content
Log in

Different Faces of the Shearlet Group

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

Recently, shearlet groups have received much attention in connection with shearlet transforms applied for orientation sensitive image analysis and restoration. The square integrable representations of the shearlet groups provide not only the basis for the shearlet transforms but also for a very natural definition of scales of smoothness spaces, called shearlet coorbit spaces. The aim of this paper is twofold: first we discover isomorphisms between shearlet groups and other well-known groups, namely extended Heisenberg groups and subgroups of the symplectic group. Interestingly, the connected shearlet group with positive dilations has an isomorphic copy in the symplectic group, while this is not true for the full shearlet group with all nonzero dilations. Indeed we prove the general result that there exist, up to adjoint action of the symplectic group, only one embedding of the extended Heisenberg algebra into the Lie algebra of the symplectic group. Having understood the various group isomorphisms it is natural to ask for the relations between coorbit spaces of isomorphic groups with equivalent representations. These connections are examined in the second part of the paper. We describe how isomorphic groups with equivalent representations lead to isomorphic coorbit spaces. In particular we apply this result to square integrable representations of the connected shearlet groups and metaplectic representations of subgroups of the symplectic group. This implies the definition of metaplectic coorbit spaces. Besides the usual full and connected shearlet groups we also deal with Toeplitz shearlet groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics, vol. 60. Springer, Berlin (1989)

  2. Cordero, E., De Mari, F., Nowak, K., Tabacco, A.: Analytic features of reproducing groups for the metaplectic representation. J. Fourier Anal. Appl. 12(2), 157–180 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cordero, E., De Mari, F., Nowak, K., Tabacco, A.: Reproducing groups for the metaplectic representation. In: Boggiatto, P., Rodino, L., Toft, J., Wong, M.W., (eds.), Pseudo-Differential Operators and Related Topics, volume 12 of Operator Theory: Advances and Applications, pp. 227–244. Birkhäuser Basel (2006)

  4. Cordero, E., De Mari, F., Nowak, K., Tabacco, A.: Dimensional upper bounds for admissible subgroups for the metaplectic representation. Math. Nachr. 283(7), 982–993 (2010)

    MathSciNet  MATH  Google Scholar 

  5. Czaja, W., King, E.J.: Isotropic shearlet analogs for \(L^2(\mathbb{R}^k)\) and localization operators. Numeri. Funct. Anal. Optim. 33(7–9), 872–905 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Czaja, W., King, E.J.: Anisotropic shearlet transforms for \(L^2(\mathbb{R}^k)\). Math. Nachr. 287(8–9), 903–916 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dahlke, S., Häuser, S., Steidl, G., Teschke, G.: Shearlet coorbit spaces: traces and embeddings in higher dimensions. Monatshefte für Math. 169(1), 15–32 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dahlke, S., Häuser, S., Teschke, G.: Coorbit space theory for the Toeplitz shearlet transform. Int. J. Wavel. Multiresolut. Inf. Process. (2012). doi:10.1142/S0219691312500373

  9. Dahlke, S., Kutyniok, G., Maass, P., Sagiv, C., Stark, H.-G., Teschke, G.: The uncertainty principle associated with the continuous shearlet transform. Int. J. Wavel. Multiresolut. Inf. Process. 6, 157–181 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dahlke, S., Kutyniok, G., Steidl, G., Teschke, G.: Shearlet coorbit spaces and associated Banach frames. Appl. Comput. Harmonic Anal. 27(2), 195–214 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dahlke, S., Steidl, G., Teschke, G.: The continuous shearlet transform in arbitrary space dimensions. J. Fourier Anal. Appl. 16(3), 340–364 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dahlke, S., Teschke, G.: The continuous shearlet transform in higher dimensions: variations of a theme. In: Danellis, C.W. (ed.) Group Theory: Classes, Representations and Connections, and Applications, pp. 167–175. Nova Science Pub Inc, New York (2010)

    Google Scholar 

  13. De Mari, F., De Vito, E.: Admissible vectors for mock metaplectic representations. Appl. Comput. Harmonic Anal. 34(2), 163–200 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic decompositions via integrable group representations. In: Function spaces and applications, (Lund, 1986). Lecture Notes in Mathematics, vol. 1302, pp. 52–73. Springer Berlin (1988)

  15. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions. Part I. J. Funct. Anal. 86(2), 307–340 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions. Part II. Mon. Math. 108(2), 129–148 (1989)

    Article  MATH  Google Scholar 

  17. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  18. Gröchenig, K.: Describing functions: atomic decompositions versus frames. Mon. Math. 112(1), 1–42 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  20. Gröchenig, K., Piotrowski, M.: Molecules in coorbit spaces and boundedness of operators. Studia Math. 192(1), 61–77 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Grohs, P.: Continuous shearlet frames and resolution of the wavefront set. Mon. Math. 164(4), 393–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guo, K., Labate, D.: Characterization and analysis of edges using the continuous shearlet transform. SIAM J. Imaging Sci. 2(3), 959–986 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, K., Labate, D., Lim, W.: Edge analysis and identification using the continuous shearlet transform. Appl. Comput. Harmonic Anal. 27(1), 24–46 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Häuser, S.: Shearlet Coorbit Spaces, Shearlet Transforms and Applications in Imaging. Dissertation, TU Kaiserslautern (2014)

  25. Häuser, S., Steidl, G.: Convex multiclass segmentation with shearlet regularization. Int. J. Comput. Math. 90(1), 62–81 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kaniuth, E., Taylor, K.F.: Induced Representations of Locally Compact Groups. Cambridge Tracts in Mathematics, vol. 197. Cambridge University Press, Cambridge (2013)

  27. King, E.J.: Wavelet and frame theory: frame bound gaps, generalized shearlets, Grassmannian fusion frames, and \(p\)-adic wavelets. Dissertation, University of Maryland, College Park (2009)

  28. King, E.J., Kutyniok, G., Lim, W.-Q.: Image inpainting: theoretical analysis and comparison of algorithms. In: Van De Ville, D., Goyal, V.K., Papadakis, M. (eds.) SPIE Optical Engineering + Applications, p. 885802. International Society for Optics and Photonics, (2013)

  29. Knapp, A.W.: Lie Groups Beyond an Introduction, vol. 140. Birkhäuser, Basel (2002)

    MATH  Google Scholar 

  30. Kutyniok, G., Labate, D., (eds.): Shearlets: Multiscale Analysis for Multivariate Data. Springer, Berlin (2012)

  31. Laugesen, R.S.S., Weaver, N., Weiss, G.L., Wilson, E.N.: A characterization of the higher dimensional groups associated with continuous wavelets. J. Geom. Anal. 12(1), 89–102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schulz, E., Taylor, K. F.: Extensions of the Heisenberg group and wavelet analysis in the plane. In Spline Functions and the Theory of Wavelets (Montreal, PQ, 1996), volume 18 of CRM Proceedings and Lecture Notes, pp. 217–225, American Mathematical Society (1996)

  33. Williamson, J.: On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58(1), 141–163 (1936)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been supported by Deutsche Forschungsgemeinschaft (DFG), Grants DA 360/19–1 and STE 571/11–1. Some parts of the paper have been written during a stay at the Erwin-Schrödinger Institute (ESI), Vienna, Workshop on “Time-Frequency Analysis”, January 13–17 2014. Therefore the support of ESI is also acknowledged. F. De Mari and E. De Vito were partially supported by Progetto PRIN 2010–2011 “Varietà reali e complesse: geometria, topologia e analisi armonica”. They are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). S. Dahlke, S. Häuser, G. Steidl and G. Teschke were partially supported by DAAD Project 57056121, “Hochschuldialog mit Südeuropa 2013”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Häuser.

Appendix

Appendix

In the following we list the Lie brackets of the canonical matrices \(D \in {\mathcal {N}}\) with the basis matrices \(X_\nu \), \(\nu \in \triangle \), and \(H_{1,0}\), \(H_{0,1}\) from the root space decomposition of \(\mathfrak {sp}(2,\mathbb {R})\) and the matrices \(M_{\Gamma }\) defined by (29).

Case 1. For \( D_1 = a_1H_{1,0} + a_2H_{0,1} \) we obtain

$$\begin{aligned} \begin{array}{lcllcl} [D_1,X_{\alpha }]&{}=&{} (a_1-a_2)X_{\alpha }, &{} [D_1,X_{-\alpha }] &{}=&{} -(a_1-a_2)X_{-\alpha },\\ {[}D_1,X_{\beta }]&{}=&{} 2a_2X_{\beta },&{} [D_1,X_{-\beta }]&{}=&{} - 2a_2X_{-\beta },\\ {[}D_1,X_{\alpha +\beta }]&{}=&{} (a_1+a_2)X_{\alpha +\beta }, &{} [D_1,X_{-\alpha -\beta }]&{}=&{} -(a_1+a_2)X_{-\alpha -\beta },\\ {[}D_1,X_{2\alpha +\beta }]&{}=&{} 2a_1X_{2\alpha +\beta },&{} [D_1,X_{-2\alpha -\beta }]&{}=&{} -2a_1X_{-2\alpha -\beta },\\ {[}D_1,H_{1,0}]&{}=&{} 0,&{} [D_1,H_{0,1}]&{}=&{} 0 \end{array} \end{aligned}$$

and \(M_\Gamma \) is a diagonal matrix with entries

$$\begin{aligned} \left( a_1 - a_2 - \Gamma , 2a_2 - \Gamma , a_1 + a_2 - \Gamma , 2a_1 - \Gamma , a_2 - a_1 - \Gamma , - 2a_2 - \Gamma , - a_2 - a_1 - \Gamma , - 2a_1 - \Gamma , - \Gamma , - \Gamma \right) , \end{aligned}$$

where \(a_1 \ge a_2 \ge 0\).

Case 2. For \( D_2 = X_{-\alpha } + aH_{1,0} + aH_{0,1} \) we obtain

$$\begin{aligned} \begin{array}{lcllcl} [D_2,X_{\alpha }] &{}=&{} H_{1,0}-H_{0,1}, &{} [D_2,X_{-\alpha }] &{}=&{} 0,\\ {[}D_2,X_{\beta }] &{}=&{} 2aX_{\beta }, &{} [D_2,X_{-\beta }] &{}=&{} -2aX_{-\beta }+X_{-\alpha -\beta },\\ {[}D_2,X_{\alpha +\beta }] &{}=&{} -2X_{\beta }+2aX_{\alpha +\beta }, &{} [D_2,X_{-\alpha -\beta }] &{}=&{} -2aX_{-\alpha -\beta }+X_{-2\alpha -\beta },\\ {[}D_2,X_{2\alpha +\beta }] &{}=&{} -2X_{\alpha +\beta }+2aX_{2\alpha +\beta }, &{} [D_2,X_{-2\alpha -\beta }] &{}=&{} -2aX_{-2\alpha -\beta },\\ {[}D_2,H_{1,0}] &{}=&{} X_{-\alpha }, &{} [D_2,H_{0,1}] &{}=&{} -X_{-\alpha } \end{array} \end{aligned}$$

and

$$\begin{aligned} M_\Gamma = \begin{pmatrix} -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 2a - \Gamma &{}\quad -2 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 2a - \Gamma &{}\quad -2 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 2a - \Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad -1 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -2a - \Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad -2a - \Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad -2a - \Gamma &{}\quad 0 &{}\quad 0 \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 \\ -1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma \end{pmatrix} \end{aligned}$$

with

$$\begin{aligned} \det \, M_\Gamma = \Gamma ^4 (\Gamma - 2a)^3 (\Gamma + 2a)^3, \qquad a \ge 0. \end{aligned}$$

Case 3. For \( D_3 = bX_{\alpha } + bX_{-\alpha } + aH_{1,0} + aH_{0,1} \) we obtain

$$\begin{aligned} \begin{array}{lcllcl} [D_3,X_{\alpha }] &{}=&{} bH_{1,0}-bH_{0,1}, &{} [D_3,X_{-\alpha }] &{}=&{} -bH_{1,0}+bH_{0,1},\\ {[}D_3,X_{\beta }] &{}=&{} 2aX_{\beta }+bX_{\alpha +\beta }, &{} [D_3,X_{-\beta }] &{}=&{} -2aX_{-\beta } + bX_{-\alpha -\beta },\\ {[}D_3,X_{\alpha +\beta }] &{}=&{} -2bX_{\beta }+2aX_{\alpha +\beta } &{}[D_3,X_{-\alpha -\beta }] &{}=&{} -2bX_{-\beta }-2aX_{-\alpha -\beta } \\ &{} &{} +bX_{2\alpha +\beta }, &{} &{} &{}+ bX_{-2\alpha -\beta },\\ {[}D_3,X_{2\alpha +\beta }] &{}=&{} -2bX_{\alpha +\beta }+2aX_{2\alpha +\beta }, &{} [D_3,X_{-2\alpha -\beta }] &{}=&{} -2bX_{-\alpha -\beta } \!-\!2aX_{-2\alpha -\beta },\\ {[}D_3,H_{1,0}] &{}=&{} -b X_{\alpha }+bX_{-\alpha }, &{} [D_3,H_{0,1}] &{}=&{} b X_{\alpha }-bX_{-\alpha } \end{array} \end{aligned}$$

and

$$\begin{aligned} M_\Gamma = \begin{pmatrix} -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -b &{}\quad b \\ 0 &{}\quad 2a - \Gamma &{}\quad -2b &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad b &{}\quad 2a - \Gamma &{}\quad -2b &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad b &{}\quad 2a - \Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad b &{}\quad -b \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -2a - \Gamma &{}\quad -2b &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad b &{}\quad -2a - \Gamma &{}\quad -2b &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad b &{}\quad -2a - \Gamma &{}\quad 0 &{}\quad 0 \\ b &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -b &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 \\ -b &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad b &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma \end{pmatrix} \end{aligned}$$

with

$$\begin{aligned} \det \, M_\Gamma= & {} \Gamma ^2 (\Gamma ^2 + 4 b^2) (\Gamma - 2a) (\Gamma + 2a) \left( (\Gamma - 2 a)^2 + 4 b^2 \right) \\&\left( (\Gamma + +2 a)^2 + 4 b^2 \right) , \quad a,b>0. \end{aligned}$$

Case 4. For \( D_4 = \varepsilon X_{\alpha +\beta } - X_{-\alpha } - \frac{\varepsilon }{2}X_{-2\alpha -\beta } \) we obtain

$$\begin{aligned} \begin{array}{lcllcl} [D_4,X_{\alpha }] &{}=&{} -\varepsilon X_{2\alpha +\beta } -\varepsilon X_{-\alpha -\beta } &{} [D_4,X_{-\alpha }] &{}=&{} 2\varepsilon X_{\beta }, \\ &{} &{}-H_{1,0} +H_{0,1}, &{}&{}&{}\\ {[}D_4,X_{\beta }] &{}=&{} 0, &{} [D_4,X_{-\beta }] &{}=&{} -\varepsilon X_{\alpha } -X_{-\alpha -\beta }, \\ {[}D_4,X_{\alpha +\beta }] &{}=&{} 2X_{\beta } +\varepsilon X_{-\alpha }, &{} [D_4,X_{-\alpha -\beta }] &{}=&{} -X_{-2\alpha -\beta } -\varepsilon H_{1,0} \\ &{}&{}&{}&{}&{} -\varepsilon H_{0,1}, \\ {[}D_4,X_{2\alpha +\beta }] &{}=&{} 2X_{\alpha +\beta } -2\varepsilon H_{1,0}, &{} [D_4,X_{-2\alpha -\beta }] &{}=&{} 2\varepsilon X_{-\alpha }, \\ {[}D_4,H_{1,0}] &{}=&{} -\varepsilon X_{\alpha +\beta } -X_{-\alpha } -\varepsilon X_{-2\alpha -\beta }, &{} [D_4,H_{0,1}] &{}=&{} -\varepsilon X_{\alpha +\beta } +X_{-\alpha } \end{array} \end{aligned}$$

and

$$\begin{aligned} M_\Gamma = \begin{pmatrix} -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad -\Gamma &{}\quad 2 &{}\quad 0 &{}\quad 2\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 2 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\varepsilon &{}\quad -\varepsilon \\ -\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad \varepsilon &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 2\varepsilon &{}\quad -1 &{}\quad 1 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ -\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -1 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -1 &{}\quad -\Gamma &{}\quad -\varepsilon &{}\quad 0 \\ -1 &{}\quad 0 &{}\quad 0 &{}\quad -2\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad -\varepsilon &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 \\ 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma \end{pmatrix} \end{aligned}$$

with \( \det \, M_\Gamma = \Gamma ^{10}. \)

Case 5. For \( D_5 = \frac{\varepsilon }{2} X_{2\alpha +\beta } + \frac{b^2\varepsilon }{2} X_{-2\alpha -\beta } + aH_{0,1} \) we obtain

$$\begin{aligned} \begin{array}{lcllcl} [D_5,X_{\alpha }] &{}=&{} -aX_{\alpha } + b^2\varepsilon X_{-\alpha -\beta }, &{} [D_5,X_{-\alpha }] &{}= &{} \varepsilon X_{\alpha +\beta },\\ {[}D_5,X_{\beta }] &{}=&{} 2aX_{\beta }, &{} [D_5,X_{-\beta }] &{}=&{} -2aX_{-\beta },\\ {[}D_5,X_{\alpha +\beta }] &{}=&{} a X_{\alpha +\beta }-b^2\varepsilon X_{-\alpha }, &{} [D_5,X_{-\alpha -\beta }] &{}=&{} -\varepsilon X_{\alpha }-aX_{-\alpha -\beta },\\ {[}D_5,X_{2\alpha +\beta }] &{}=&{} 2b^2\varepsilon H_{1,0}, &{} [D_5,X_{-2\alpha -\beta }] &{}= &{} -2\varepsilon H_{1,0},\\ {[}D_5,H_{1,0}] &{}=&{} -\varepsilon X_{2\alpha +\beta } + b^2\varepsilon X_{-2\alpha -\beta }, &{} [D_5,H_{0,1}], &{}=&{} 0 \end{array} \end{aligned}$$

and

$$\begin{aligned} M_\Gamma = \begin{pmatrix} -a-\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 2a-\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad a-\Gamma &{}\quad 0 &{}\quad \varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\varepsilon &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad -b^2\varepsilon &{}\quad 0 &{}\quad a-\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -2a-\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ b^2\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -a-\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad b^2\varepsilon &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 2b^2\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -2\varepsilon &{}\quad -\Gamma &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma \end{pmatrix} \end{aligned}$$

with

$$\begin{aligned} \det \, M_\Gamma= & {} \Gamma ^2 (\Gamma - 2a) (\Gamma + 2a) (\Gamma ^2 + 4b^2) \left( (\Gamma -a)^2 + b^2 \right) \\&\left( (\Gamma ^2 + a)^2 + b^2 \right) , \quad a,b \ge 0. \end{aligned}$$

Case 6. For \( D_6 = \eta X_{\beta } + \frac{\varepsilon }{2}X_{2\alpha +\beta } + b_2^2\eta X_{-\beta } + \frac{b_1^2\varepsilon }{2}X_{-2\alpha -\beta } \) we obtain

$$\begin{aligned} \begin{array}{lcllcl} [D_6,X_{\alpha }] &{}=&{} -\eta X_{\alpha +\beta } + b_1^2\varepsilon X_{-\alpha -\beta }, &{} [D_6,X_{-\alpha }] &{}=&{} \varepsilon X_{\alpha +\beta } - b_2^2\eta X_{-\alpha -\beta },\\ {[}D_6,X_{\beta }] &{}=&{} b_2^2\eta H_{0,1}, &{} [D_6,X_{-\beta }] &{}=&{} -\eta H_{0,1},\\ {[}D_6,X_{\alpha +\beta }] &{}=&{} b_2^2\eta X_{\alpha } - b_1^2\varepsilon X_{-\alpha }, &{} [D_6,X_{-\alpha -\beta }] &{}=&{} -\varepsilon X_{\alpha } + \eta X_{-\alpha },\\ {[}D_6,X_{2\alpha +\beta }] &{}=&{} 2b_1^2\varepsilon H_{1,0}, &{} [D_6,X_{-2\alpha -\beta }] &{}= &{} -2\varepsilon H_{1,0},\\ {[}D_6,H_{1,0}] &{}=&{} -\varepsilon X_{2\alpha +\beta } + b_1^2\varepsilon X_{-2\alpha -\beta }, &{} [D_6,H_{0,1}] &{}= &{} -2\eta X_{\beta } + 2b_2^2\eta X_{-\beta } \end{array} \end{aligned}$$

and

$$\begin{aligned} M_\Gamma = \begin{pmatrix} -\Gamma &{}\quad 0 &{}\quad b_2^2\eta &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -2\eta \\ -\eta &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad \varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\varepsilon &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad -b_1^2\varepsilon &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad \eta &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 2b_2^2\eta \\ b_1^2\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -b_2^2\eta &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad b_1^2\varepsilon &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 2b_1^2\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -2\varepsilon &{}\quad -\Gamma &{}\quad 0 \\ 0 &{}\quad b_2^2\eta &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\eta &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma \end{pmatrix} \end{aligned}$$

with

$$\begin{aligned} \det \, M_\Gamma= & {} \Gamma ^2 (\Gamma ^2 + 4b_2^2) (\Gamma ^2 + 4 b_1^2) \left( \Gamma ^2 + (b_1 - b_2)^2 \right) \\&\left( \Gamma ^2 + (b_1 + b_2)^2 \right) , \quad b_1 \ge b_2 \ge 0. \end{aligned}$$

Case 7. For \( D_7 = - X_{\alpha } - \varepsilon X_{\beta } + \frac{\varepsilon }{2b^2}X_{2\alpha +\beta } - b^2X_{-\alpha } \) and

$$\begin{aligned} \begin{array}{lcllcl} [D_7,X_{\alpha }] &{}=&{} -\varepsilon X_{\alpha +\beta } - b^2 &{} [D_7,X_{-\alpha }] \!&{}=&{}\! \frac{\varepsilon }{b^2} X_{\alpha +\beta }+H_{1,0}\!-\! H_{0,1},\\ &{} &{} H_{1,0} + b^2H_{0,1},&{}&{}&{}\\ {[}D_7,X_{\beta }] &{}=&{} -X_{\alpha +\beta }, &{} [D_7,X_{-\beta }] \!&{}=&{}\! -b^2 X_{-\alpha -\beta } \!-\! \varepsilon H_{0,1},\\ {[}D_7,X_{\alpha +\beta }] &{}=&{} 2b^2 X_{\beta }- X_{2\alpha +\beta }, &{} [D_7,X_{-\alpha -\beta }] &{}=&{} -\frac{\varepsilon }{b^2} X_{\alpha } + \varepsilon X_{-\alpha }\\ &{}&{}&{}&{}&{} +\, 2X_{-\beta }-b^2 X_{-2\alpha -\beta },\\ {[}D_7,X_{2\alpha +\beta }] &{}=&{} 2b^2 X_{\alpha +\beta }, &{} [D_7,X_{-2\alpha -\beta }] &{}=&{} 2X_{-\alpha -\beta } - \frac{2\varepsilon }{b^2}H_{1,0},\\ {[}D_7,H_{1,0}] &{}=&{} X_{\alpha } - \frac{\varepsilon }{b^2} X_{2\alpha +\beta }-b^2X_{-\alpha }, &{} [D_7,H_{0,1}] \!&{}=&{}\! -X_{\alpha } \!-\! 2\varepsilon X_{\beta }+b^2X_{-\alpha } \end{array} \end{aligned}$$

and

$$\begin{aligned} M_\Gamma = \begin{pmatrix} -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\frac{\varepsilon }{b^2} &{}\quad 0 &{}\quad 1 &{}\quad -1 \\ 0 &{}\quad -\Gamma &{}\quad 2b^2 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -2\varepsilon \\ -\varepsilon &{}\quad -1 &{}\quad -\Gamma &{}\quad 2b^2 &{}\quad \frac{\varepsilon }{b^2} &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad -1 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\frac{\varepsilon }{b^2} &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 0 &{}\quad \varepsilon &{}\quad 0 &{}\quad -b^2 &{}\quad b^2 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma &{}\quad 2 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -b^2 &{}\quad -\Gamma &{}\quad 2 &{}\quad 0 &{}\quad 0 \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -b^2 &{}\quad -\Gamma &{}\quad 0 &{}\quad 0 \\ -b^2 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad -\frac{2\varepsilon }{b^2} &{}\quad -\Gamma &{}\quad 0 \\ b^2 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -1 &{}\quad -\varepsilon &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad -\Gamma \end{pmatrix} \end{aligned}$$

with \(\det \, M_\Gamma = \Gamma ^4 (\Gamma ^2 + 4 b^2)^3\), \(b > 0\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dahlke, S., De Mari, F., De Vito, E. et al. Different Faces of the Shearlet Group. J Geom Anal 26, 1693–1729 (2016). https://doi.org/10.1007/s12220-015-9605-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-015-9605-7

Keywords

Mathematics Subject Classification

Navigation