Skip to main content
Log in

Invariant Differential Operators on H-Type Groups and Discrete Components in Restrictions of Complementary Series of Rank One Semisimple Groups

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We explicitly construct a finite number of discrete components in the restriction of complementary series representations of rank one semisimple groups \(G\) to rank one subgroups \(G_1\). For this we use the realizations of complementary series representations of \(G\) and \(G_1\) on Sobolev-type spaces on the nilpotent radicals \(N\) and \(N_1\) of the minimal parabolics in \(G\) and \(G_1\), respectively. The groups \(N\) and \(N_1\) are of H-type and we construct explicitly invariant differential operators between \(N\) and \(N_1\). These operators induce the projections onto the discrete components.Our construction of the invariant differential operators is carried out uniformly in the framework of H-type groups and also works for those H-type groups which do not occur as a nilpotent radical of a parabolic subgroup in a semisimple group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beckmann, R., Clerc, J.-L.: Singular invariant trilinear forms and covariant (bi-)differential operators under the conformal group. J. Funct. Anal. 262(10), 4341–4376 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ben Saïd, S., Koufany, K., Zhang, G.: Invariant trilinear forms on spherical principal series of real-rank one semisimple Lie groups. Int. J. Math. (2014) doi:10.1142/S0129167X14500177

  3. Cowling, M.: Unitary and uniformly bounded representations of some simple Lie groups. Harmonic Analysis and Group Representations. pp. 49–128. Liguori, Naples (1982)

  4. Cowling, M., Dooley, A.H., Korányi, A., Ricci, F.: H-type groups and Iwasawa decompositions. Adv. Math. 87(1), 1–41 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cowling, M., Haagerup, U.: Completely bounded multipliers of the Fourier algebra of a simple Lie group of real rank one. Invent. Math. 96(3), 507–549 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cowling, M., Korányi, A.: Harmonic Analysis on Heisenberg Type groups from a Geometric viewpoint, Lie Group Representations, III (College Park, MD, 1982, 1983), Lecture Notes in Math., pp. 60–100. Springer, Berlin (1984)

    Google Scholar 

  7. Damek, E., Ricci, F.: A class of nonsymmetric harmonic Riemannian spaces. Bull. Am. Math. Soc. (N.S.) 27(1), 139–142 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dooley, A.H., Zhang, G.: Spherical functions on harmonic extensions of H-type groups. J. Geom. Anal. 9(2), 247–255 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duflo, M., Vargas, J.A.: Branching laws for square integrable representations. Proc. Japan Acad. Ser. A Math. Sci. 86(3), 49–54 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions, p. II. McGraw-Hill Book Company Inc, New York (1953)

    Google Scholar 

  11. Gross, B., Wallach, N.: Restriction of small discrete series representations to symmetric subgroups, The mathematical legacy of Harish-Chandra (Baltimore, MD, 1998). In: Proceedings Symposium Pure Mathematics, vol. 68, pp. 255–272. American Mathematical Society, Providence (2000)

  12. Juhl, A.: Families of conformally covariant differential operators, \(Q\)-curvature and holography. In: Progress in Mathematics, vol. 275, Birkhäuser, Basel (2009)

  13. Kobayashi, T.: Theory of discretely decomposable restrictions of unitary representations of semisimple Lie groups and some applications. Sugaku Expositions 18(1), 1–37 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Kobayashi, T.: Multiplicity-free theorems of the restrictions of unitary highest weight modules with respect to reductive symmetric pairs, Representation theory and automorphic forms. In: Progress in Mathematics, vol. 255, pp. 45–109. Birkhäuser Boston, (2008)

  15. Kobayashi, T., Ørsted, B., Somberg, P., Soucek, V.: Branching laws for Verma modules and applications in parabolic geometry. I. Arxiv preprint arXiv:1305.6040

  16. Kobayashi, T., Pevzner, M.: Rankin-Cohen operators for symmetric pairs. Arxiv preprint arXiv:1301.2111

  17. Kobayashi, T., Speh, B.: Symmetry breaking for representations of rank one orthogonal groups. Arxiv preprint arXiv:1310.3213

  18. Kostant, B.: On the existence and irreducibility of certain series of representations. Bull. Am. Math. Soc. 75, 627–642 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  19. Möllers, J., Ørsted, B., Oshima, Y.: Knapp-Stein type intertwining operators for symmetric pairs. Arxiv preprint arXiv:1309.3904

  20. Möllers, J., Oshima, Y.: Restriction of complementary series representations of \(O(1, N)\) to symmetric subgroups. Arxiv preprint arXiv:1209.2312

  21. Ørsted, B., Vargas, J.A.: Restriction of square integrable representations: discrete spectrum. Duke Math. J. 123(3), 609–633 (2004)

    Article  MathSciNet  Google Scholar 

  22. Speh, B., Venkataramana, T.N.: Discrete components of some complementary series. Forum Math. 23(6), 1159–1187 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Speh, B., Zhang, G.: Restriction to symmetric subgroups of unitary representations of rank one semisimple Lie groups. Arxiv preprint arXiv:1304.2868 (2013)

  24. Zhang, G.: Branching coefficients of holomorphic representations and Segal-Bargmann transform. J. Funct. Anal. 23(2), 306–349 (2002)

    Article  Google Scholar 

  25. Zhang, G.: Discrete components in restriction of unitary representations of rank one semisimple Lie groups. Arxiv preprint arXiv:1111.6406 (2011)

  26. Zhang, G.: Tensor products of complementary series of rank one Lie groups. Arxiv preprint arXiv:1402.2950 (2014)

Download references

Acknowledgments

Research by G. Zhang was partially supported by the Swedish Science Council (VR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Zhang.

Additional information

Communicated by Jiri Dadok.

Appendix: Jacobi Polynomials

Appendix: Jacobi Polynomials

The classical Jacobi polynomials \(P_n^{(\alpha ,\beta )}(z)\) can be defined by (see [10, Eq. 10.8 (12)])

They satisfy the following parity identity (see [10, Eq. 10.8 (13)]):

$$\begin{aligned} P_n^{(\alpha ,\beta )}(-z) = (-1)^nP_n^{(\beta ,\alpha )}(z). \end{aligned}$$

The following recurrence relation in \(n\) holds (see [10, Eq. 10.8 (11)]):

$$\begin{aligned}&(2n+\alpha +\beta +1)\left[ (2n+\alpha +\beta )(2n+\alpha +\beta +2)z+\alpha ^2-\beta ^2\right] P_n^{(\alpha ,\beta )}(z)\\&\quad = 2(n+\alpha )(n+\beta )(2n+\alpha +\beta +2)P_{n-1}^{(\alpha ,\beta )}(z)\\&\qquad +2(n+1)(n+\alpha +\beta +1)(2n+\alpha +\beta )P_{n+1}^{(\alpha ,\beta )}(z). \end{aligned}$$
(6.1)

We further have the following functional relation (see [10, Eq. 10.8 (33)]):

$$\begin{aligned}&(2n+\alpha +\beta +2)(1+z)P_n^{(\alpha ,\beta +1)}(z)\\&\quad = 2(n+\beta +1)P_n^{(\alpha ,\beta )}(z)+2(n+1)P_{n+1}^{(\alpha ,\beta )}(z). \end{aligned}$$
(6.2)

Identities (6.1) and (6.2) together yield

$$\begin{aligned}&2(n+\beta +1)\left[ (2n+\alpha -\beta )+(2n+\alpha +\beta +2)z\right] P_n^{(\alpha ,\beta )}(z)\\&\qquad =(n+\alpha )(2n+\alpha +\beta +2)(1+z)^2P_{n-1}^{(\alpha ,\beta +2)}(z)+4(n+1)(\beta +1)P_{n+1}^{(\alpha ,\beta )}(z). \end{aligned}$$
(6.3)

We further remark that for \(\alpha =-\frac{1}{2}\) or \(\beta =-\frac{1}{2}\) the Jacobi polynomials degenerate to Gegenbauer polynomials (see [10, Eq. 10.9 (21)]):

$$\begin{aligned} C_{2n}^\lambda (z) = \frac{(\lambda )_n}{(\frac{1}{2})_n}P_n^{(\lambda -\frac{1}{2},-\frac{1}{2})}(2z^2-1) = (-1)^n\frac{(\lambda )_n}{(\frac{1}{2})_n}P_n^{(-\frac{1}{2},\lambda -\frac{1}{2})}(1-2z^2). \end{aligned}$$
(6.4)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Möllers, J., Ørsted, B. & Zhang, G. Invariant Differential Operators on H-Type Groups and Discrete Components in Restrictions of Complementary Series of Rank One Semisimple Groups. J Geom Anal 26, 118–142 (2016). https://doi.org/10.1007/s12220-014-9540-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9540-z

Keywords

Mathematics Subject Classification

Navigation