Skip to main content
Log in

Mappings of Finite Inner Distortion: Global Homeomorphism Theorem

  • Published:
The Journal of Geometric Analysis Aims and scope Submit manuscript

Abstract

We show that if \(f\in W_{loc}^{1,n-1}(\mathbb {R}^n,\mathbb {R}^n)\), \(n\ge 3\), is a local homeomorphism of \(K\)-bounded 1-mean inner distortion, then \(f\) is a homeomorphism onto \(\mathbb {R}^n\). We also establish the \(K_I\)-weighted Väisälä’s inequality for mappings of finite inner distortion under minimal assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Csörnyei, M., Hencl, S., Malý, J.: Homeomorphisms in the Sobolev space \(W^{1, n-1}\). J. Reine Angew. Math. 644, 221–235 (2010)

    MATH  MathSciNet  Google Scholar 

  2. Federer, H.: Geometric Measure Theory, Grundlehren Math. Wiss., vol. 153. Springer, New York (1969)

    Google Scholar 

  3. Franchi, B., Hajlasz, P., Koskela, P.: Definitions of Sobolev classes on metric spaces. Ann. Inst. Fourier (Grenoble) 49(6), 1903–1924 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Guo, C.Y.: Mappings of finite distortion of polynomial type. J. Geom. Anal. 24(1), 1052–1063 (2014). doi:10.1007/s12220-012-9363-8

  5. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces: An Approach Based on Upper Gradients. In: Cambridge Studies in Advanced Mathematics Series (2014) (to appear)

  6. Hencl, S., Koskela, P.: Lecture notes on mappings of finite distortion. Lecture Notes in Mathematics, vol. 2096, XI, p. 176 (2014)

  7. Hencl, S., Koskela, P., Malý, J.: Regularity of the inverse of a Sobolev homeomorphism in space. Proc. R. Soc. Edinb. A 136(6), 1267–1285 (2006)

    Article  MATH  Google Scholar 

  8. Hencl, S., Rajala, K.: Optimal assumptions for discreteness. Arch. Ration. Mech. Anal. 207(3), 775–783 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Holopainen, I., Pankka, P.: Mappings of finite distortion: global homeomorphism theorem. Ann. Acad. Sci. Fenn. Math. 29(1), 59–80 (2004)

    MATH  MathSciNet  Google Scholar 

  10. Iwaniec, T., Martin, G.: Geometric Function Theory and Non-linear Analysis. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2001)

    Google Scholar 

  11. Iwaniec, T., Koskela, P., Onninen, J.: Mappings of finite distortion: monotonicity and continuity. Invent. Math. 144(3), 507–531 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kauhanen, J., Koskela, P., Maly, J.: Mappings of finite distortion: discreteness and openness. Arch. Ration. Mech. Anal. 160(2), 135–151 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Koskela, P., Malý, J.: Mappings of finite distortion: the zero set of the Jacobian. JEMS 5(2), 95–105 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Koskela, P., Onninen, J.: Mappings of finite distortion: capacity and modulus inequalities. J. Reine Angew. Math. 599, 1–26 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Koskela, P., Onninen, J., Rajala, K.: Mappings of Finite Distortion: Injectivity Radius of a Local Homeomorphism, Future Trends in Geometric Function Theory, Reports of University of Jyväskylä, Department of Mathematics and Statistics, Jyväskylä, vol. 92. pp. 169–174 (2003)

  16. Malý, J., Swanson, D., Ziemer, W.P.: The co-area formula for Sobolev mappings. Trans. Am. Math. Soc. 355(2), 477–492 (2003)

    Article  MATH  Google Scholar 

  17. Martio, O., Rickman, S., Väisälä, J.: Definitions for quasiregular mappings. Ann. Acad. Sci. Fenn. A 448, 40 (1969)

    Google Scholar 

  18. Martio, O., Rickman, S., Väisälä, J.: Topological and metric properties of quasiregular mappings. Ann. Acad. Sci. Fenn. A 488, 31 (1971)

    Google Scholar 

  19. Moscariello, G., di Napoli, A.P.: The regularity of the inverses of Sobolev homeomorphisms with finite distortion. J. Geom. Anal. 24, 571–594 (2014). doi:10.1007/s12220-012-9345-x

    Article  MATH  MathSciNet  Google Scholar 

  20. Pankka, P.: Mappings of Finite Distortion and Weighted Parabolicity, Future Trends in Geometric Function Theory, Reports of University of Jyväskylä, Department of Mathematics and Statistics, Jyväskylä, vol. 92. pp. 191–198 (2003)

  21. Perović, M.: On the problem of radius of injectivity for the mappings quasiconformal in the mean. Glas. Mat. 20(40), 345–348 (1985)

    Google Scholar 

  22. Rajala, K.: Mappings of finite distortion: the Rickman-Picard theorem for mappings of finite lower order. J. Anal. Math. 94, 235–248 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Rajala, K.: Bloch’s theorem for mappings of bounded and finite distortion. Math. Ann. 339(2), 445–460 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Reshetnyak, Y.G.: Space Mappings with Bounded Distortion. Translations of Mathematical Monographs, vol. 73. American Mathematical Society, Providence (1989)

    MATH  Google Scholar 

  25. Rickman, S.: Quasiregular mappings. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 26. Springer, Berlin (1993)

    Google Scholar 

  26. Tengvall, V.: Differentiability in the Sobolev space \(W^{1, n-1}\). Calc. Var. Partial Differ. Equ. (2013). doi:10.1007/s00526-013-0679-4

  27. Väisälä, J.: Discrete open mappings on manifolds. Ann. Acad. Sci. Fenn. A 392, 1–9 (1966)

    Google Scholar 

  28. Väisälä, J.: Lectures on \(n\)-Dimensional Quasiconformal Mappings. Lecture Notes in Mathematics, vol. 229. Springer, Berlin, New York (1971)

    Google Scholar 

  29. Zorich, V.A.: The theorem of M.A. Lavrent’ev on quasiconformal mappings in space. Math. Sb. 74, 417–433 (1967)

    Google Scholar 

Download references

Acknowledgments

I wish to thank my supervisor Academy Professor Pekka Koskela for numerous suggestions. I also wish to thank Professor Stanislav Hencl and Ville Tengvall for useful comments on a preliminary version of this work. Finally, I want to express my sincere gratitude to the referee whose helpful comments substantially improved the exposition. C.Y. Guo was partially supported by the Academy of Finland Grant 131477.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Yu Guo.

Additional information

Communicated by Marco Abate.

Appendix: Proof of the Regularity of Generalized Inverse

Appendix: Proof of the Regularity of Generalized Inverse

Let \(f\in W_{loc}^{1,n-1}(\Omega ,\mathbb {R}^n)\) be a continuous, discrete and open mapping of finite inner distortion with \(K_I(\cdot ,f)\in L_{loc}^1(\Omega )\). Moreover, assume that \(|f(B_f)|=0\). Let \(U\subset \subset \Omega \) be a normal domain such that \(f(U)=V\). We set \(m=\mu (f,U)\) and define the generalized inverse mapping \(g_U:V\rightarrow \mathbb {R}^n\) of \(f\) by

$$\begin{aligned} g_U(y)=\frac{1}{m}\sum _{x\in f^{-1}(y)\cap U}i(x,f)x. \end{aligned}$$
(5.1)

We prove the following regularity result for the generalized inverse in this Appendix.

Proposition 5.1

Let \(f\) and \(U\) be as above. Then \(g_U\in W^{1,n}(V,\mathbb {R}^n)\).

Proposition 5.1 can be viewed as a generalization of the main results of [19]. To be more precise, consider the case where \(f\) is a homeomorphism. Then \(g_U=f^{-1}|_V\) and hence \(f^{-1}\in W^{1,n}(V,\mathbb {R}^n)\). On the other hand, Proposition 5.1 also generalizes [14, Theorem 2.1]. We will mainly follow the proof used in the homeomorphic case [1].

We will use the notation \(\pi _r(x)=|x|\) for the radial projection and \(\pi _S(x)=x/|x|\) for the projection to the unit sphere.

Lemma 5.2

Let \(B(x,r_0)\subset U\). Then for almost every \(r\in (0,r_0)\) the mapping \(f:S(x,r)\rightarrow \mathbb {R}^n\) satisfies condition \(N\), i.e.,

$$\begin{aligned} \fancyscript{H}^{n-1}(f(A))=0 \quad \text {for every}\ A\subset S(x,r)\ \text {such that}\ \fancyscript{H}^{n-1}(A)=0. \end{aligned}$$

Proof

This follows immediately from [26, Proposition 3.3].

The next lemma is quite similar to [1, Lemma 4.2].

Lemma 5.3

Let \(h=\pi _S\circ f\) and let \(E\subset \Omega \) be a measurable set. Then

$$\begin{aligned} \int \limits _{\partial B(0,1)}\fancyscript{H}^1(\pi _r(\{x\in E:h(x)=z\}))d\fancyscript{H}^{n-1}(z)\le \int \limits _E |D^{\#}h(x)|dx. \end{aligned}$$

Proof

If \(f\) is Lipschitz, we can use the coarea formula from [16, Theorem 1.1] to obtain

$$\begin{aligned}&\int \limits _{\partial B(0,1)}\fancyscript{H}^1(\pi _r(\{x\in E:h(x)=z\}))d\fancyscript{H}^{n-1}(z)\\&\quad \le \int \limits _{\partial B(0,1)}\fancyscript{H}^1(\{x\in E:h(x)=z\})d\fancyscript{H}^{n-1}(z)=\int \limits _E |D^{\#}h(x)|dx. \end{aligned}$$

In the general case, we cover the domain of \(f\) up to a set of measure zero by countably many sets of the type \(\{f=f_j\}\) with \(f_j\) Lipschitz.

It remains to consider the case where \(E=N\) with \(|N|=0\). For \(z\in S(0,1)\) we denote \(S_z=\pi _S^{-1}(z)\). To obtain a contradiction suppose that there is a set \(P\subset S(0,1)\) such that \(\fancyscript{H}^{n-1}(P)>0\) and for every \(z\in P\) we have \(\fancyscript{H}^1(\pi _r(f^{-1}(S_z)\cap E))>0\). Consider the set \(A\subset (0,\infty )\times S(0,1)\):

$$\begin{aligned} (r,z)\in A \quad \Leftrightarrow \quad z\in P\ \text {and}\ r\in \pi _r(f^{-1}(S_z)\cap E). \end{aligned}$$

By Fubini’s theorem we have

$$\begin{aligned} |A|=\int \limits _P \fancyscript{H}^1(\pi _r(f^{-1}(S_z)\cap E))d\fancyscript{H}^{n-1}(z)>0. \end{aligned}$$

Set \(E_r=E\cap S(x,r)\). For almost every \(r\) we have \(\fancyscript{H}^{n-1}(E_r)=0\) and therefore we obtain \(\fancyscript{H}^{n-1}(\pi _S\circ f(E_r))=0\) for almost every \(r\) by Lemma 5.2. Now the Fubini theorem implies that

$$\begin{aligned} |A|=\int \limits _0^\infty \fancyscript{H}^{n-1}(\pi _S\circ f(E_r))dr=0, \end{aligned}$$

which gives us a contradiction. \(\square \)

The next lemma will give us the regularity of \(g_U\). The proof is similar to [1, Proof of Lemma 4.3]; see also [7, Proof of Lemma 3.2].

Lemma 5.4

The following Poincaré type inequality holds:

$$\begin{aligned} \int \limits _B |g_U(y)-c|dy\le Cr_0\int \limits _{f^{-1}(B)}|D^{\#}f(x)|dx, \end{aligned}$$
(5.2)

for each ball \(B=B(y_0,r_0)\subset V\), where and \(C=C(m,n)\).

Proof

We fix a point \(y'\in B\) and set

$$\begin{aligned} h(x)=\frac{f(x)-y'}{|f(x)-y'|}. \end{aligned}$$

Let \(y''\in B\) and \(\beta \) be the line segment joining \(y'\) and \(y''\). Let \(\{x_i'\}=f^{-1}(y')\) and \(\{x_i''\}=f^{-1}(y'')\), \(i=1,\ldots ,m\).  [25, Corollary II 3.4] implies that there exist paths \(\alpha _i\subset U\cap f^{-1}(B)\) connecting \(x_i'\) and \(x_i''\) such that \(f\circ \alpha _i=\beta \), \(\text {Card}\{i:\alpha _i(t)=x\}=i(x,f)\) for all \(x\in U\cap f^{-1}(\beta (t))\), and \(|\alpha _1|\cup \ldots \cup |\alpha _m|=U\cap f^{-1}(|\beta |)\). Choose \(x_{i_0}'\) and \(x_{i_0}''\) such that

$$\begin{aligned} |x_{i_0}'-x_{i_0}''|=\max \{|x_i'-x_i''|:i=1,\ldots ,m \}. \end{aligned}$$

Without loss of generality, we may assume that \(x_{i_0}'=0\). It is clear that

$$\begin{aligned} |x_i'-x_i''|\le \fancyscript{H}^1(\pi _r\circ \alpha _{i_0}), \quad \text {for all}\quad i=1,\ldots ,m. \end{aligned}$$

It follows that

$$\begin{aligned} |g_U(y')-g_U(y'')|\le C(m)\fancyscript{H}^1(\pi _r\circ f^{-1}(\beta )). \end{aligned}$$

On the other hand,

$$\begin{aligned} y\in \beta \quad \Rightarrow \quad \frac{y-y'}{|y-y'|}=\frac{y''-y'}{|y''-y'|}. \end{aligned}$$

Hence, if \(r=|y''-y'|\), then

$$\begin{aligned} |g_U(y')-g_U(y'')|&\le C(m)\fancyscript{H}^1(\pi _r\circ f^{-1}(\beta ))\\&\le C(m)\fancyscript{H}^1(\pi _r(\{x\in f^{-1}(B):h(x)=\frac{y''-y'}{r}\})). \end{aligned}$$

Given \(r>0\), using Lemma 5.3 for the mapping \(f(x)-y'\) we estimate

$$\begin{aligned}&\int \limits _{B\cap \partial B(y',r)}|g_U(y'')-g_U(y')|d\fancyscript{H}^{n-1}(y'')\\&\quad \le C(m)\int \limits _{B\cap \partial B(y',r)}\fancyscript{H}^1(\pi _r(\{x\in f^{-1}(B):h(x)=\frac{y''-y'}{r}\}))d\fancyscript{H}^{n-1}(y'')\\&\quad \le C(m)r^{n-1}\int \limits _{B(0,1)}\fancyscript{H}^1(\pi _r(\{x\in f^{-1}(B):h(x)=z\}))d\fancyscript{H}^{n-1}(z)\\&\quad \le C(m)r^{n-1}\int \limits _{f^{-1}(B)}|D^{\#}h(x)|dx\\&\quad \le C(n,m)r^{n-1}\int \limits _{f^{-1}(B)}\frac{|D^{\#}f(x)|}{|f(x)-y'|^{n-1}}dx, \end{aligned}$$

where the last inequality follows from the chain rule, the formula

$$\begin{aligned} |D^{\#}(AB)|\le C|D^{\#}A||D^{\#}B|, \end{aligned}$$

and the estimate

$$\begin{aligned} \left| D^{\#}\left( \frac{z-y'}{z-y'}\right) \right| \le \frac{C}{|z-y'|^{n-1}}. \end{aligned}$$

Hence

$$\begin{aligned} |B||g_U(y')-c|&\le \int \limits _B |g_U(y'')-g_U(y')|dy''\\&=\int \limits _0^{2r_0}\Big (\int \limits _{B\cap \partial B(y',r)}|g_U(y'')-g_U(y')|d\fancyscript{H}^{n-1}(y'') \Big )dr\\&\le C\int \limits _0^{2r_0}r^{n-1}\left( \int \limits _{f^{-1}(B)}\frac{|D^{\#}f(x)|}{|f(x)-y'|^{n-1}}dx \right) dr\\&\le Cr_0^n \int \limits _{f^{-1}(B)}\frac{|D^{\#}f(x)|}{|f(x)-y'|^{n-1}}dx. \end{aligned}$$

Integrating with respect to \(y'\) and then using Fubini’s theorem we obtain

$$\begin{aligned} \int \limits _B |g_U(y')-c|dy'&\le C\int \limits _{f^{-1}(B)}|D^{\#}f(x)|\left( \int \limits _B\frac{dy'}{|f(x)-y'|^{n-1}} \right) dx\\&\le Cr_0\int \limits _{f^{-1}(B)}|D^{\#}f(x)|dx. \end{aligned}$$

\(\square \)

Proof of Proposition 5.1

We claim that there is a function \(g\in L^n(V)\) such that

$$\begin{aligned} \int \limits _{f^{-1}(B)}|D^{\#}f|\le m\int \limits _B g. \end{aligned}$$
(5.3)

This and Lemma 5.4 imply that the pair \(g_U\), \(g\) satisfies a \(1\)-Poincaré inequality in \(V\). From [3, Theorem 9] or [5, Theorem 9.4.2], we then deduce that \(g_U\in W^{1,n}(V,\mathbb {R}^n)\).

By Theorem 3.3, \(f\) is a mapping of finite distortion. Since \(K_I(\cdot ,f)\in L^1(U)\) and by the last inequality in [26, p. 18]

$$\begin{aligned} |Df(x)|^n\le C(n)J_f(x)K_I(x,f)^{n-1} \end{aligned}$$

for a.e. \(x\in U\), we know that \(K(\cdot ,f)\in L^1(U)\). It follows from [13, Theorem 1.2] that \(f\) satisfies condition \(N^{-1}\) and hence \(|f^{-1}(f(B_f))|=0\). Since \(U\) is compact, we may decompose \(U\backslash f^{-1}(f(B_f))=\cup _{i=1}^k U_i\) such that \(f|_{U_i}\) is a homeomorphism and \(U_i\cap U_j=\emptyset \) if \(i\ne j\) (here we have used the fact that \(f\) is a covering mapping on \(U\backslash f^{-1}(f(B_f))\), which is true since \(U\) is a normal domain; see, e.g., [27]). Let \(V_i=f(U_i)\). Then \(V=\cup _{i=1}^k V_i\cup f(B_f)\). On the other hand, since the area formula holds on a full measure set \(U_i'\subset U_i\) by Lemma 2.2, we define a function \(g_i:V_i\rightarrow \mathbb {R}^n\) by setting

$$\begin{aligned} g_i(f(x))={\left\{ \begin{array}{ll} \frac{|D^{\#}f(x)|}{J_f(x)} &{} \quad \text {if } \quad x\in U_i',\ J_f(x)>0 \\ 0 &{} \quad \text {otherwise}. \end{array}\right. } \end{aligned}$$

Note that \(J(\cdot ,f)>0\) a.e. again by [13, Theorem 1.2], we have

$$\begin{aligned} |D^{\#}f(x)|=g_i(f(x))J_f(x)\qquad \text {a.e.}\ \text {in}\ U_i. \end{aligned}$$

The desired mapping \(g\) is then defined to be \(g_i\) on each \(V_i\) and \(0\) on \(f(B_f)\). Now

$$\begin{aligned} \int \limits _V g(y)^ndy&=\sum _{i=1}^k \int \limits _{V_i}g_i(y)^ndy\le \sum _{i=1}^k\int \limits _{V_i} g_i(y)^nN(y,f,U_i')dy\\&=\sum _{i=1}^k\int \limits _{f^{-1}(V_i)\cap U_i'}g_i(f(x))^nJ_f(x)dx=\int \limits _{U}K_I(x)dx \end{aligned}$$

and

$$\begin{aligned} \int \limits _{f^{-1}(B)}|D^{\#}f(x)|dx&\le \int \limits _{f^{-1}(B)\cap U'}g(f(x))J_f(x)dx\\&\le m\int \limits _B g(y)dy. \end{aligned}$$

The proof is then complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, CY. Mappings of Finite Inner Distortion: Global Homeomorphism Theorem. J Geom Anal 25, 1969–1991 (2015). https://doi.org/10.1007/s12220-014-9500-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12220-014-9500-7

Keywords

Mathematics Subject Classification

Navigation