Skip to main content
Log in

Stochastic model and analysis of uncertain stresses characteristics for embankment in permafrost regions

  • Geotechnical Engineering
  • Published:
KSCE Journal of Civil Engineering Aims and scope

Abstract

Taking the randomness of mechanical parameters and thermal regime into account, a stochastic analysis model is established for investigating the uncertain stresses characteristics of embankment in permafrost regions. The stochastic finite element formulae are obtained by Neumann Stochastic Finite Element Method (NSFEM), and a stochastic coupling program is compiled by Matrix Laboratory (MATLAB) software. Using our program, the stochastic stresses fields of an embankment in a permafrost region are obtained and analyzed. The results provide a new way to predict the stresses characteristics of the embankment in permafrost regions, and it shows that the stochastic temperature has a different influence on the mean stresses and standard deviation, and the larger value is at a different location. The standard deviations in stresses increase with time when considering the stochastic effect of temperature and parameters, which imply that the results of conventional deterministic analysis may be far from the true value. It can improve our understanding of the stochastic stresses fields of embankments and provide a theoretical basis for engineering reliability analysis and design in permafrost regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dasaka, S. M. and Zhang, L. M. (2012). “Spatial variability of in situ weathered soil.” Geotechnique, Vol. 62, No. 5, pp. 375–384, DOI: 10.1680/geot.8.P.151.3786.

    Article  Google Scholar 

  • Elkateb, T., Chalaturnyk, R., and Robertson, P. K. (2003). “An overview of soil heterogeneity: Quantification and implications on geotechnical field problems.” Canadian Geotechnical Journal, Vol. 40, No. 1, pp. 1–15, DOI: 10.1139/t02-090.

    Article  Google Scholar 

  • Jiang, S. H., Li, D. Q., Cao, Z. J., Zhou, C. B., and Phoon, K. K. (2015). “Efficient system reliability analysis of slope stability in spatially variable soils using monte carlo simulation.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 141, No. 2, DOI: 10.1061/(ASCE)GT.1943-5606.0001227.

    Google Scholar 

  • Jiang, S. H., Li, D. Q., Zhang, L. M., and Zhou, C. B. (2013). “Slope reliability analysis considering spatially variable shear strength parameters using a non-intrusive stochastic finite element method.” Engineering Geology, Vol. 168, No. 1, pp. 120–128, DOI: 10.1016/j.enggeo.2013.11.006.

    Google Scholar 

  • Lai, Y. M., Jin, L., and Chang, X. X. (2009). “Yield criterion and elastoplastic damage constitutive model for frozen sandy soil.” International Journal of Plasticity, Vol. 25, No. 6, pp. 1177–1205, DOI: 10.1016/j.ijplas.2008.06.010.

    Article  MATH  Google Scholar 

  • Lai, Y. M., Wu, Z. W., Liu, S. Y., and Den, X. J. (2001). “Nonlinear analyses for the semicoupled problem of temperature, seepage, and stress fields in cold region retaining walls.” Journal of Thermal Stresses, Vol. 24, pp. 1199–1216, DOI: 10.1080/014957301753251692.

    Article  Google Scholar 

  • Lai, Y. M., Yang, Y. G., Chang, X. X., and Li, S.Y. (2010). “Strength criterion and elastoplastic constitutive model of frozen silt in generalized plastic mechanics.” International Journal of Plasticity, Vol. 26, No. 10, pp. 1461–1484, DOI: 10.1016/j.ijplas.2010.01.007.

    Article  MATH  Google Scholar 

  • Lai, Y. M., Zhang, X. F., Xiao, J. Z., Zhang, S. J., and Liu, Z. Q. (2005). “Nonlinear analysis for frost-heaving force of land bridges on Qing-Tibet railway in cold regions.” Journal of Thermal Stresses, Vol. 28, pp. 317–331, DOI: 10.1080/01495730590909531.

    Article  Google Scholar 

  • Lai, Y. M., Li, J. B., and Li, Q. Z. (2012). “Study on damage statistical constitutive model and stochastic simulation for warm ice-rich frozen silt.” Cold Regions Science and Technology, Vol. 71, No. 2, pp. 102–110, DOI: 10.1016/j.coldregions.2011.11.001.

    Article  Google Scholar 

  • Lai, Y. M., Li, S. Y., Qi, J. L., Gao, Z. H., and Chang, X. X. (2008). “Strength distributions of warm frozen clay and its stochastic damage constitutive model.” Cold Regions Science and Technology, Vol. 53, pp. 200–215, DOI: 10.1016/j.coldregions.2007.11.001.

    Article  Google Scholar 

  • Li, D. Q., Jiang, S. H., Chen, Y. F., and Zhou, C. B. (2014). “Reliability analysis of serviceability performance for an underground cavern using a non-intrusive stochastic method.” Environmental Earth Sciences, Vol. 71, No. 3, pp. 1169–1182, DOI: 10.1007/s12665-013-2521-x.

    Article  Google Scholar 

  • Li, N., Xu, B., and Chen, F. X. (2006). “Coupling analysis of temperature, deformation and stress field for frozen soil roadbed.” Chinese Journal of Highway and Transport, Vol. 19, No. 3, pp. 1–7, DOI: 10.3321/j.issn:1001-7372.2006.03.001.

    Google Scholar 

  • Li, S. Y., Lai, Y. M., Zhang, M. Y., and Dong Y. H. (2009). “Study on long-term stability Qinghai-Tibet Railway embankment.” Cold Regions Science and Technology, Vol. 57, pp. 139–147, DOI: 10.1016/j.coldregions.2009.02.003.

    Article  Google Scholar 

  • Liu, Z. Q., Lai, Y. M., Zhang, M. Y., and Zhang, X. F. (2007). “Numerical analysis for random temperature fields of embankment in cold regions.” Science in China Series D: Earth Sciences, Vol. 50, No. 3, pp. 404–410, DOI: 10.1007/s11430-007-2043-Z.

    Article  Google Scholar 

  • Liu, Z. Q., Lai, Y. M., Zhang, X. F., and Zhang, M. Y. (2006). “Random temperature fields of embankment in cold regions.” Cold Regions Science and Technology, Vol. 45, No. 2, pp. 76–82, DOI: 10.1016/j.coldregions.2006.02.001.

    Article  Google Scholar 

  • Ma, W., Mu, Y. H., Wu, Q. B., Sun, Z. Z., and Liu, Y. Z. (2011). “Characteristics and mechanisms of embankment deformation along the Qinghai-Tibet Railway in permafrost regions.” Cold Regions Science and Technology, Vol. 67, No. 3, pp. 178–186, DOI: 10.1016/j.coldregions.2011.02.010.

    Article  Google Scholar 

  • Mao, X. S., Wang, B. G., Hu, C. S., and Dou M. J. (2006). “Numerical analyses of deformation and stress fields in permafrost regions.” Journal of Glaciology and Geocryology, Vol. 28, No. 3, pp. 396–400, DOI: 10.3969/j.issn.1000-0240.2006.03.015.

    Google Scholar 

  • Meng, F. Z. (1985). Thoery of elasto-plastic finite deformation and finite element method, Tsinghua University Press, Beijing.

    Google Scholar 

  • Mu, Y. H. (2012). Analyses on Dynamic Variations of Embankment Thermal regime and Deformation along the Qinghai-Tibet Railway in Permafrost Regions, PhD Dissertation for Graduate University of Chinese Academy of Sciences, Beijing.

    Google Scholar 

  • Ramly, H. E., Morgenstern, N. R., and Cruden, D.M. (2002). “Probabilistic slope stability analysis for practice.” Canadian Geotechnical Journal, Vol. 39, No. 3, pp. 665–683, DOI: 10.1139/t02-034.

    Article  Google Scholar 

  • Soulie, M., Montes, P., and Silvestri, V. (1990). “Modelling spatial variability of soil parameters.” Canadian Geotechnical Journal, Vol. 27, No. 5, pp. 617–630, DOI: 10.1139/t90-076.

    Article  Google Scholar 

  • Vanmarcke, E, (1983). Random fields: Analysis and synthesis, MIT Press, Cambridge, Mass.

    MATH  Google Scholar 

  • Wang, S. J., Huang, X. M., and Hou, S. G. (2006). “Numerical analyses of pavement deformation and stress in permafrost regions.” Journal of Glaciology and Geocryology, Vol. 28, No. 2, pp. 217–222, DOI: 10.3969/j.issn.1000-0240.2006.02.010.

    Google Scholar 

  • Wang, T. (2015). Study on the Analysis Model of Stochastic Temperature Fields and Displacement Fields in Permafrost Regions, PhD Dissertation for China University of Mining and Technology, Jiangsu.

    Google Scholar 

  • Wang, T. and Zhou, G. Q. (2013). “Neumann stochastic finite element method for calculating temperature field of frozen soil based on random field theory.” Sciences in Cold and Arid Regions, Vol. 5, No. 4, pp. 488–497, DOI: 10.3724/SP.J.1226.2013.00488.

    Article  Google Scholar 

  • Wang, T., Zhou, G. Q., Wang, J. Z., Zhao, X. D., Yin, Q. Y., Xia, L. J., and Liu, Y. Y. (2015). “Stochastic analysis model of uncertain temperature characteristics for embankment in warm permafrost regions.” Cold Regions Science and Technology, Vol. 109, pp. 43–52, DOI: 10.1016/j.coldregions.2014.09.013.

    Article  Google Scholar 

  • Wu, Z. W., Cheng, G. D., and Zhu, L. N. (1988). Roadbed engineering in permafrost region, Lanzhou University Press, Lanzhou.

    Google Scholar 

  • Yamazaki, F., Shinozuka, M., and Dasgupta, G. (1988). “Neumann expansion for stochastic finite element analysis.” Journal of Engineering Mechanics, Vol. 114, No. 8, pp. 1335–1354, DOI: 10.1061/(ASCE)0733-9399(1988)114:8(1335).

    Article  Google Scholar 

  • Yao, Y. P. and Kong, Y. X. (2012). “Extended UHmodel: Threedimensional unified hardening model for anisotropic clays.” Journal of Engineering Mechanics, Vol. 138, No. 7, pp. 853–866, DOI: 10.1061/(ASCE)EM.1943-7889.0000397.

    Article  Google Scholar 

  • Yao, Y. P., Sun, D. A., and Matsuoka, H. (2008). “A unified constitutive model for both clay and sand with hardening parameter independent on stress path.” Computers and Geotechnics, Vol. 35, No. 2, pp. 210–222, DOI: 10.1016/j.compgeo.2007.04.003.

    Article  Google Scholar 

  • Yao, Y. P., Zhou, A. N., and Lu, D. C. (2007). “Extended transformed stress space for geomaterials and its application.” Journal of Engineering Mechanics, Vol. 133, No. 10, pp. 1115–1123, DOI: 10.1061/ASCE0733-93992007133:101115.

    Article  Google Scholar 

  • Zheng, Y., Shen, Z., and Gong, X. (2002). Generalized Plastic Mechanics-The Principles of Geotechnical Plastic Mechanics, China Architecture and Building Press, Beijing.

    Google Scholar 

  • Zhou, G. Q., Wang, T., Wang, J. Z., and Zhao, X. D. (2015). “Stochastic analysis of uncertain temperature characteristics for expressway with wide subgrade in cold regions.” Cold Regions Science and Technology, 114, pp. 36–43, DOI: 10.1016/j.coldregions. 2015.03.002.

    Article  Google Scholar 

  • Zhu, H. and Zhang, L. M. (2013). “Characterizing geotechnical anisotropic spatial variations using random field theory.” Canadian Geotechnical Journal, Vol. 50, No. 7, pp. 723–73, DOI: 10.1139/cgj-2012-0345.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Zhou, G., Wang, J. et al. Stochastic model and analysis of uncertain stresses characteristics for embankment in permafrost regions. KSCE J Civ Eng 21, 1679–1689 (2017). https://doi.org/10.1007/s12205-016-1094-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12205-016-1094-0

Keywords

Navigation