Skip to main content

Advertisement

Log in

Roles of defective ALDH2 polymorphism on liver protection and cancer development

  • Review
  • Published:
Environmental Health and Preventive Medicine Aims and scope

Abstract

Because serum transaminases elevate alcohol dose dependently as a consequence of liver injury, they serve as useful biological markers of excessive drinking. However, these markers are inadequate in individuals with a defective allele of the aldehyde dehydrogenase 2 gene, ALDH2*2, because they show a different correlation with the amount of ethanol. For example, the serum alanine aminotransferase (ALT) level could become even lower than the baseline after alcohol intake in ALDH2*2 carriers. In fact, multiple studies suggest that ALDH2*2 is a hepato-protective factor in healthy individuals. Importantly, excessive drinking is particularly dangerous in carriers of ALDH2*2 because the risk of alcohol-related cancer is much higher than that for ALDH2*1/*1 carriers. Without recognizing the genotype interaction on serum transaminase, the opportunity to warn people about potential cancer risks is missed owing to incorrect interpretation. This is particularly important in East Asian countries where approximately half of the population carries the ALDH2*2 allele. To date, the mechanism of liver protection from ethanol load in individuals with ALDH2*2 has not been fully elucidated. However, some reasonable mechanisms have been suggested by experimental studies, including remodelling of detoxifying systems. Further studies to uncover the whole mechanism are anticipated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ALDH2:

Aldehyde dehydrogenase 2

AST:

Aspartate aminotransferase

ALT:

Alanine transaminase

GGT:

Gamma-glutamyltransferase

4HNE:

4-hydroxy-2-nonenal

MDA:

Malondialdehyde

SNPs:

Single nucleotide polymorphisms

TNFα:

Tumour necrosis factor-alpha

GSH:

Glutathione

References

  1. Goedde HW, Agarwal DP, Fritze G, Meier-Tackmann D, Singh S, Beckmann G, et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum Genet. 1992;88:344–6.

    Article  CAS  PubMed  Google Scholar 

  2. Li H, Borinskaya S, Yoshimura K, Kal’ina N, Marusin A, Stepanov VA, et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet. 2009;73:335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Matsumoto A. Fundamental Properties of Aldehyde Dehydrogenase 2 (ALDH2) and the Importance of the ALDH2 Polymorphism. Nihon Eiseigaku Zasshi. 2016;71:55–68.

    Article  PubMed  Google Scholar 

  4. Kamino K, Nagasaka K, Imagawa M, Yamamoto H, Yoneda H, Ueki A, et al. Deficiency in mitochondrial aldehyde dehydrogenase increases the risk for late-onset Alzheimer’s disease in the Japanese population. Biochem Biophys Res Commun. 2000;273:192–6.

    Article  CAS  PubMed  Google Scholar 

  5. Wang B, Wang J, Zhou S, Tan S, He X, Yang Z, et al. The association of mitochondrial aldehyde dehydrogenase gene (ALDH2) polymorphism with susceptibility to late-onset Alzheimer’s disease in Chinese. J Neurol Sci. 2008;268:172–5.

    Article  CAS  PubMed  Google Scholar 

  6. Yamaguchi J, Hasegawa Y, Kawasaki M, Masui T, Kanoh T, Ishiguro N, et al. ALDH2 polymorphisms and bone mineral density in an elderly Japanese population. Osteoporos Int. 2006;17:908–13.

    Article  CAS  PubMed  Google Scholar 

  7. D’Souza Y, Elharram A, Soon-Shiong R, Andrew RD, Bennett BM. Characterization of Aldh2 mice as an age-related model of cognitive impairment and Alzheimer’s disease. Mol Brain. 2015;8:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shimizu Y, Sakai A, Menuki K, Mori T, Isse T, Oyama T, et al. Reduced bone formation in alcohol-induced osteopenia is associated with elevated p21 expression in bone marrow cells in aldehyde dehydrogenase 2-disrupted mice. Bone. 2011;48:1075–86.

    Article  CAS  PubMed  Google Scholar 

  9. Hoshi H, Hao W, Fujita Y, Funayama A, Miyauchi Y, Hashimoto K, et al. Aldehyde-stress resulting from Aldh2 mutation promotes osteoporosis due to impaired osteoblastogenesis. J Bone Miner Res. 2012;27:2015–23.

    Article  CAS  PubMed  Google Scholar 

  10. Takeuchi F, Isono M, Nabika T, Katsuya T, Sugiyama T, Yamaguchi S, et al. Confirmation of ALDH2 as a Major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ J. 2011;75:911–8.

    Article  CAS  PubMed  Google Scholar 

  11. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet. 2011;43:531–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Zhang Y, Zhang J, Tang X, Qian Y, Gao P, et al. Association of a functional single-nucleotide polymorphism in the ALDH2 gene with essential hypertension depends on drinking behavior in a Chinese Han population. J Hum Hypertens 2012;27:181–6.

  13. Takagi S, Baba S, Iwai N, Fukuda M, Katsuya T, Higaki J, et al. The aldehyde dehydrogenase 2 gene is a risk factor for hypertension in Japanese but does not alter the sensitivity to pressor effects of alcohol: the Suita study. Hypertens Res. 2001;24:365–70.

    Article  CAS  PubMed  Google Scholar 

  14. Amamoto K, Okamura T, Tamaki S, Kita Y, Tsujita Y, Kadowaki T, et al. Epidemiologic study of the association of low-Km mitochondrial acetaldehyde dehydrogenase genotypes with blood pressure level and the prevalence of hypertension in a general population. Hypertens Res. 2002;25:857–64.

    Article  CAS  PubMed  Google Scholar 

  15. Lee SY, Chen SL, Chang YH, Chen SH, Chu CH, Huang SY, et al. The ALDH2 and DRD2/ANKK1 genes interacted in bipolar II but not bipolar I disorder. Pharmacogenet Genom. 2010;20:500–6.

    Article  CAS  Google Scholar 

  16. Yoshimasu K, Mure K, Hashimoto M, Takemura S, Tsuno K, Hayashida M, et al. Genetic alcohol sensitivity regulated by ALDH2 and ADH1B polymorphisms as indicator of mental disorders in Japanese employees. Alcohol Alcohol. 2015;50:39–45.

    Article  PubMed  Google Scholar 

  17. Yoshimasu K, Mure K, Hashimoto M, Takemura S, Tsuno K, Hayashida M, et al. Genetic alcohol sensitivity regulated by ALDH2 and ADH1B polymorphisms is strongly associated with depression and anxiety in Japanese employees. Drug Alcohol Depend. 2015;147:130–6.

    Article  CAS  PubMed  Google Scholar 

  18. Vasiliou V, Pappa A, Estey T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab Rev. 2004;36:279–99.

    Article  CAS  PubMed  Google Scholar 

  19. Vasiliou V, Bairoch A, Tipton KF, Nebert DW. Eukaryotic aldehyde dehydrogenase (ALDH) genes: human polymorphisms, and recommended nomenclature based on divergent evolution and chromosomal mapping. Pharmacogenetics. 1999;9:421–34.

    Article  CAS  PubMed  Google Scholar 

  20. Jackson B, Brocker C, Thompson DC, Black W, Vasiliou K, Nebert DW, et al. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum Genom. 2011;5:283–303.

    Article  CAS  Google Scholar 

  21. Wenzel P, Hink U, Oelze M, Schuppan S, Schaeuble K, Schildknecht S, et al. Role of reduced lipoic acid in the redox regulation of mitochondrial aldehyde dehydrogenase (ALDH-2) activity. Implications for mitochondrial oxidative stress and nitrate tolerance. J Biol Chem. 2007;282:792–9.

    Article  CAS  PubMed  Google Scholar 

  22. Larson HN, Zhou J, Chen Z, Stamler JS, Weiner H, Hurley TD. Structural and functional consequences of coenzyme binding to the inactive asian variant of mitochondrial aldehyde dehydrogenase: roles of residues 475 and 487. J Biol Chem. 2007;282:12940–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Brichac J, Ho KK, Honzatko A, Wang R, Lu X, Weiner H, et al. Enantioselective oxidation of trans-4-hydroxy-2-nonenal is aldehyde dehydrogenase isozyme and Mg2+ dependent. Chem Res Toxicol. 2007;20:887–95.

    Article  CAS  PubMed  Google Scholar 

  24. Yoval-Sanchez B, Rodriguez-Zavala JS. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem Res Toxicol. 2012;25:722–9.

    Article  CAS  PubMed  Google Scholar 

  25. Yoshida A, Hsu LC, Yasunami M. Genetics of human alcohol-metabolizing enzymes. Prog Nucl Acid Res Mol Biol. 1991;40:255–87.

    Article  CAS  Google Scholar 

  26. Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci U S A. 1984;81:258–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farres J, Wang X, Takahashi K, Cunningham SJ, Wang TT, Weiner H. Effects of changing glutamate 487 to lysine in rat and human liver mitochondrial aldehyde dehydrogenase. A model to study human (Oriental type) class 2 aldehyde dehydrogenase. J Biol Chem. 1994;269:13854–60.

    CAS  PubMed  Google Scholar 

  28. Peng GS, Chen YC, Tsao TP, Wang MF, Yin SJ. Pharmacokinetic and pharmacodynamic basis for partial protection against alcoholism in Asians, heterozygous for the variant ALDH2*2 gene allele. Pharmacogenet Genom. 2007;17:845–55.

    Article  CAS  Google Scholar 

  29. Matsuo K, Wakai K, Hirose K, Ito H, Saito T, Tajima K. Alcohol dehydrogenase 2 His47Arg polymorphism influences drinking habit independently of aldehyde dehydrogenase 2 Glu487Lys polymorphism: analysis of 2,299 Japanese subjects. Cancer Epidemiol Biomark Prev. 2006;15:1009–13.

    Article  CAS  Google Scholar 

  30. Nakamura Y, Amamoto K, Tamaki S, Okamura T, Tsujita Y, Ueno Y, et al. Genetic variation in aldehyde dehydrogenase 2 and the effect of alcohol consumption on cholesterol levels. Atherosclerosis. 2002;164:171–7.

    Article  CAS  PubMed  Google Scholar 

  31. Yokoyama A, Yokoyama T, Brooks PJ, Mizukami T, Matsui T, Kimura M, et al. Macrocytosis, macrocytic anemia, and genetic polymorphisms of alcohol dehydrogenase-1B and aldehyde dehydrogenase-2 in Japanese alcoholic men. Alcohol Clin Exp Res. 2014;38:1237–46.

    Article  CAS  PubMed  Google Scholar 

  32. Chen YJ, Chen C, Wu DC, Lee CH, Wu CI, Lee JM, et al. Interactive effects of lifetime alcohol consumption and alcohol and aldehyde dehydrogenase polymorphisms on esophageal cancer risks. Int J Cancer. 2006;119:2827–31.

    Article  CAS  PubMed  Google Scholar 

  33. Cui R, Kamatani Y, Takahashi A, Usami M, Hosono N, Kawaguchi T, et al. Functional variants in ADH1B and ALDH2 coupled with alcohol and smoking synergistically enhance esophageal cancer risk. Gastroenterology. 2009;137:1768–75.

    Article  CAS  PubMed  Google Scholar 

  34. Hiyama T, Yoshihara M, Tanaka S, Chayama K. Genetic polymorphisms and esophageal cancer risk. Int J Cancer. 2007;121:1643–58.

    Article  CAS  PubMed  Google Scholar 

  35. Guo YM, Wang Q, Liu YZ, Chen HM, Qi Z, Guo QH. Genetic polymorphisms in cytochrome P4502E1, alcohol and aldehyde dehydrogenases and the risk of esophageal squamous cell carcinoma in Gansu Chinese males. World J Gastroenterol. 2008;14:1444–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yokoyama A, Omori T, Yokoyama T, Tanaka Y, Mizukami T, Matsushita S, et al. Esophageal melanosis, an endoscopic finding associated with squamous cell neoplasms of the upper aerodigestive tract, and inactive aldehyde dehydrogenase-2 in alcoholic Japanese men. J Gastroenterol. 2005;40:676–84.

    Article  PubMed  Google Scholar 

  37. Yokoyama A, Mizukami T, Yokoyama T. Genetic polymorphisms of alcohol dehydrogense-1B and aldehyde dehydrogenase-2, alcohol flushing, mean corpuscular volume, and aerodigestive tract neoplasia in Japanese drinkers. Adv Exp Med Biol. 2015;815:265–79.

    Article  PubMed  Google Scholar 

  38. Yokoyama A, Muramatsu T, Ohmori T, Yokoyama T, Okuyama K, Takahashi H, et al. Alcohol-related cancers and aldehyde dehydrogenase-2 in Japanese alcoholics. Carcinogenesis. 1998;19:1383–7.

    Article  CAS  PubMed  Google Scholar 

  39. Yokoyama A, Yokoyama T, Omori T, Matsushita S, Mizukami T, Takahashi H, et al. Helicobacter pylori, chronic atrophic gastritis, inactive aldehyde dehydrogenase-2, macrocytosis and multiple upper aerodigestive tract cancers and the risk for gastric cancer in alcoholic Japanese men. J Gastroenterol Hepatol. 2007;22:210–7.

    Article  CAS  PubMed  Google Scholar 

  40. Hidaka A, Sasazuki S, Matsuo K, Ito H, Sawada N, Shimazu T, et al. Genetic polymorphisms of ADH1B, ADH1C and ALDH2, alcohol consumption, and the risk of gastric cancer: the Japan Public Health Center-based prospective study. Carcinogenesis. 2015;36:223–31.

    Article  CAS  PubMed  Google Scholar 

  41. Murata M, Tagawa M, Watanabe S, Kimura H, Takeshita T, Morimoto K. Genotype difference of aldehyde dehydrogenase 2 gene in alcohol drinkers influences the incidence of Japanese colorectal cancer patients. Jpn J Cancer Res. 1999;90:711–9.

    Article  CAS  PubMed  Google Scholar 

  42. Kato S, Tajiri T, Matsukura N, Matsuda N, Taniai N, Mamada H, et al. Genetic polymorphisms of aldehyde dehydrogenase 2, cytochrome p450 2E1 for liver cancer risk in HCV antibody-positive japanese patients and the variations of CYP2E1 mRNA expression levels in the liver due to its polymorphism. Scand J Gastroenterol. 2003;38:886–93.

    Article  CAS  PubMed  Google Scholar 

  43. Munaka M, Kohshi K, Kawamoto T, Takasawa S, Nagata N, Itoh H, et al. Genetic polymorphisms of tobacco- and alcohol-related metabolizing enzymes and the risk of hepatocellular carcinoma. J Cancer Res Clin Oncol. 2003;129:355–60.

    Article  CAS  PubMed  Google Scholar 

  44. Sakamoto T, Hara M, Higaki Y, Ichiba M, Horita M, Mizuta T, et al. Influence of alcohol consumption and gene polymorphisms of ADH2 and ALDH2 on hepatocellular carcinoma in a Japanese population. Int J Cancer. 2006;118:1501–7.

    Article  CAS  PubMed  Google Scholar 

  45. Abe H, Aida Y, Seki N, Sugita T, Tomita Y, Nagano T, et al. Aldehyde dehydrogenase 2 polymorphism influences development to hepatocellular carcinoma in East Asian alcoholic liver cirrhosis. J Gastroenterol Hepatol 2015;30:1376–83.

  46. Minegishi Y, Tsukino H, Muto M, Goto K, Gemma A, Tsugane S, et al. Susceptibility to lung cancer and genetic polymorphisms in the alcohol metabolite-related enzymes alcohol dehydrogenase 3, aldehyde dehydrogenase 2, and cytochrome P450 2E1 in the Japanese population. Cancer. 2007;110:353–62.

    Article  CAS  PubMed  Google Scholar 

  47. Koyanagi YN, Ito H, Oze I, Hosono S, Tanaka H, Abe T, et al. Development of a prediction model and estimation of cumulative risk for upper aerodigestive tract cancer on the basis of the aldehyde dehydrogenase 2 genotype and alcohol consumption in a Japanese population. Eur J Cancer Prev 2016. doi:10.1097/CEJ.0000000000000222.

  48. Pelkonen O, Nebert DW. Metabolism of polycyclic aromatic hydrocarbons: etiologic role in carcinogenesis. Pharmacol Rev. 1982;34:189–222.

    CAS  PubMed  Google Scholar 

  49. Matsuda T, Matsumoto A, Uchida M, Kanaly RA, Misaki K, Shibutani S, et al. Increased formation of hepatic N2-ethylidene-2’-deoxyguanosine DNA adducts in aldehyde dehydrogenase 2-knockout mice treated with ethanol. Carcinogenesis. 2007;28:2363–6.

    Article  CAS  PubMed  Google Scholar 

  50. Nagayoshi H, Matsumoto A, Nishi R, Kawamoto T, Ichiba M, Matsuda T. Increased formation of gastric N(2)-ethylidene-2’-deoxyguanosine DNA adducts in aldehyde dehydrogenase-2 knockout mice treated with ethanol. Mutat Res. 2009;673:74–7.

    Article  CAS  PubMed  Google Scholar 

  51. Ishikawa H, Miyatsu Y, Kurihara K, Yokoyama K. Gene-environmental interactions between alcohol-drinking behavior and ALDH2 and CYP2E1 polymorphisms and their impact on micronuclei frequency in human lymphocytes. Mutat Res. 2006;594:1–9.

    Article  CAS  PubMed  Google Scholar 

  52. Lu Y, Cederbaum AI. CYP2E1 and oxidative liver injury by alcohol. Free Radic Biol Med. 2008;44:723–38.

    Article  CAS  PubMed  Google Scholar 

  53. He X, Feng S. Role of metabolic enzymes P450 (CYP) on activating procarcinogen and their polymorphisms on the risk of cancers. Curr Drug Metab. 2015;16:850–63.

    Article  CAS  PubMed  Google Scholar 

  54. Matsumoto A, Thompson D, Chen Y, Vasiliou V, Kawamoto T, Ichiba M. Heme oxygenase 1 protects ethanol-administered liver tissue in Aldh2 knockout mice. Alcohol. 2016;52:49–54.

    Article  CAS  PubMed  Google Scholar 

  55. Giboney PT. Mildly elevated liver transaminase levels in the asymptomatic patient. Am Fam Physician. 2005;71:1105–10.

    PubMed  Google Scholar 

  56. Sharpe PC, McBride R, Archbold GP. Biochemical markers of alcohol abuse. QJM. 1996;89:137–44.

    Article  CAS  PubMed  Google Scholar 

  57. Takeshita T, Yang X, Morimoto K. The ALDH2 genotype, alcohol intake, and liver-function biomarkers among Japanese male workers. Hum Genet. 2000;106:589–93.

    Article  CAS  PubMed  Google Scholar 

  58. Murata C, Watanabe T, Furuya H, Sugioka Y, Mikurube H, Yokoyama A, et al. Aldehyde dehydrogenase 2 and beta 3-adrenergic receptor gene polymorphisms: their association with elevated liver enzymes and metabolic syndrome. Metabolism. 2003;52:1096–101.

    Article  CAS  PubMed  Google Scholar 

  59. Matsumoto A, Kawamoto T, Mutoh F, Isse T, Oyama T, Kitagawa K, et al. Effects of 5-week ethanol feeding on the liver of aldehyde dehydrogenase 2 knockout mice. Pharmacogenet Genom. 2008;18:847–52.

    Article  CAS  Google Scholar 

  60. Matsumoto A, Vasiliou V, Kawamoto T, Tanaka K, Ichiba M. Ethanol reduces lifespan, body weight, and serum alanine aminotransferase level of aldehyde dehydrogenase 2 knockout mouse. Alcohol Clin Exp Res. 2014;38:1883–93.

    Article  CAS  PubMed  Google Scholar 

  61. Kwon HJ, Won YS, Park O, Chang B, Duryee MJ, Thiele GE, et al. Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology. 2014;60:146–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bailey SM, Cunningham CC. Effect of dietary fat on chronic ethanol-induced oxidative stress in hepatocytes. Alcohol Clin Exp Res. 1999;23:1210–8.

    Article  CAS  PubMed  Google Scholar 

  63. Bailey SM, Cunningham CC. Acute and chronic ethanol increases reactive oxygen species generation and decreases viability in fresh, isolated rat hepatocytes. Hepatology. 1998;28:1318–26.

    Article  CAS  PubMed  Google Scholar 

  64. Matsumoto A, Ichiba M, Horita M, Yamashita Z, Takahashi T, Isse T, et al. Lack of aldehyde dehydrogenase ameliorates oxidative stress induced by single-dose ethanol administration in mouse liver. Alcohol. 2007;41:57–9.

    Article  CAS  PubMed  Google Scholar 

  65. Louvet A, Mathurin P. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol. 2015;12:231–42.

    Article  PubMed  Google Scholar 

  66. Gao B, Bataller R. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology. 2011;141:1572–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Aroor AR, Jackson DE, Shukla SD. Elevated activation of ERK1 and ERK2 accompany enhanced liver injury following alcohol binge in chronically ethanol-fed rats. Alcohol Clin Exp Res. 2011;35:2128–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lindros KO, Jokelainen K, Nanji AA. Acetaldehyde prevents nuclear factor-kappa B activation and hepatic inflammation in ethanol-fed rats. Lab Invest. 1999;79:799–806.

    CAS  PubMed  Google Scholar 

  69. Yokoyama A, Yokoyama T, Matsui T, Mizukami T, Kimura M, Matsushita S, et al. Alcohol dehydrogenase-1B (rs1229984) and aldehyde dehydrogenase-2 (rs671) genotypes are strong determinants of the serum triglyceride and cholesterol levels of Japanese alcoholic men. PLoS One. 2015;10:e0133460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Endo J, Sano M, Katayama T, Hishiki T, Shinmura K, Morizane S, et al. Metabolic remodeling induced by mitochondrial aldehyde stress stimulates tolerance to oxidative stress in the heart. Circ Res. 2009;105:1118–27.

    Article  CAS  PubMed  Google Scholar 

  71. Zhang H, Gong DX, Zhang YJ, Li SJ, Hu S. Effect of mitochondrial aldehyde dehydrogenase-2 genotype on cardioprotection in patients with congenital heart disease. Eur Heart J. 2012;33:1606–14.

    Article  CAS  PubMed  Google Scholar 

  72. Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 2015;4:193–9.

    Article  CAS  PubMed  Google Scholar 

  73. Chien J, Liu J, Lee MH, Jen CL, Batrla-Utermann R, Lu SN, et al. Risk and Predictors of Hepatocellular Carcinoma for Chronic Hepatitis b Patients With Newly Developed Cirrhosis. J Gastroenterol Hepatol 2016. doi:10.1111/jgh.13422.

  74. Xia G, Fan F, Liu M, Wang S, Wu J, Shen C, et al. Aldehyde dehydrogenase 2 deficiency blunts compensatory cardiac hypertrophy through modulating Akt phosphorylation early after transverse aorta constriction in mice. Biochim Biophys Acta. 2016;1862:1587–93.

    Article  CAS  PubMed  Google Scholar 

  75. Danielsen SA, Eide PW, Nesbakken A, Guren T, Leithe E, Lothe RA. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta. 2015;1855:104–21.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by JSPS Grant-in-Aid for Young Scientists (B) Grant Number 25870515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akiko Matsumoto.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsumoto, A., Thompson, D.C., Chen, Y. et al. Roles of defective ALDH2 polymorphism on liver protection and cancer development. Environ Health Prev Med 21, 395–402 (2016). https://doi.org/10.1007/s12199-016-0579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12199-016-0579-2

Keywords

Navigation