Skip to main content

Advertisement

Log in

Mechanical Properties of the Tumor Stromal Microenvironment Probed In Vitro and Ex Vivo by In Situ-Calibrated Optical Trap-Based Active Microrheology

  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

One of the hallmarks of the malignant transformation of epithelial tissue is the modulation of stromal components of the microenvironment. In particular, aberrant extracellular matrix (ECM) remodeling and stiffening enhances tumor growth and survival and promotes metastasis. Type I collagen is one of the major ECM components. It serves as a scaffold protein in the stroma contributing to the tissue’s mechanical properties, imparting tensile strength and rigidity to tissues such as those of the skin, tendons, and lungs. Here we investigate the effects of intrinsic spatial heterogeneities due to fibrillar architecture, pore size and ligand density on the microscale and bulk mechanical properties of the ECM. Type I collagen hydrogels with topologies tuned by polymerization temperature and concentration to mimic physico-chemical properties of a normal tissue and tumor microenvironment were measured by in situ-calibrated Active Microrheology by Optical Trapping revealing significantly different microscale complex shear moduli at Hz-kHz frequencies and two orders of magnitude of strain amplitude that we compared to data from bulk rheology measurements. Access to higher frequencies enabled observation of transitions from elastic to viscous behavior that occur at ~200–2750 Hz, which largely was dependent on tissue architecture well outside the dynamic range of instrument acquisition possible with SAOS bulk rheology. We determined that mouse melanoma tumors and human breast tumors displayed complex moduli ~5–1000 Pa, increasing with frequency and displaying a nonlinear stress–strain response. Thus, we show the feasibility of a mechanical biopsy in efforts to provide a diagnostic tool to aid in the design of therapeutics complementary to those based on standard histopathology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Abidine, Y., R. Michel, A. Duperray, L. Iulian, C. Verdier, Y. Abidine, et al. Physical properties of polyacrylamide gels probed by AFM and rheology. EPL Eur. Phys. Soc. 109:38003, 2015.

    Google Scholar 

  2. Acerbi, I., L. Cassereau, I. Dean, Q. Shi, A. Au, C. Park, et al. Human breast cancer invasion and aggression correlates with ECM stiffening and immune cell infiltration. Integr. Biol. 7(10):1120–1134, 2015. doi:10.1039/c5ib00040h.

    Article  Google Scholar 

  3. Alcaraz, J., L. Buscemi, M. Grabulosa, X. Trepat, B. Fabry, R. Farré, and D. Navajas. Microrheology of human lung epithelial cells measured by atomic force microscopy. Biophys. J. 84(3):2071–2079, 2003. doi:10.1016/S0006-3495(03)75014-0.

    Article  Google Scholar 

  4. Alexander, S., B. Weigelin, F. Winkler, and P. Friedl. Preclinical intravital microscopy of the tumour-stroma interface: invasion, metastasis, and therapy response. Curr. Opin. Cell Biol. 25(5):659–671, 2013. doi:10.1016/j.ceb.2013.07.001.

    Article  Google Scholar 

  5. An, K. N., Y. L. Sun, and Z. P. Luo. Flexibility of type I collagen and mechanical property of connective tissue. Biorheology 41(3–4):239–246, 2004.

    Google Scholar 

  6. Arevalo, R. C., J. S. Urbach, and D. L. Blair. Size-dependent rheology of type-I collagen networks. Biophys. J. 99(8):L65–L67, 2010. doi:10.1016/j.bpj.2010.08.008.

    Article  Google Scholar 

  7. Barcus, C. E., P. J. Keely, K. W. Eliceiri, and L. A. Schuler. Stiff collagen matrices increase tumorigenic prolactin signaling in breast cancer cells. J. Biol. Chem. 288(18):12722–12732, 2013. doi:10.1074/jbc.M112.447631.

    Article  Google Scholar 

  8. Berg-sørensen, K., and H. Flyvbjerg. Power spectrum analysis for optical tweezers Power spectrum analysis for optical tweezers. Rev. Sci. Instrum. 594(75):594, 2004. doi:10.1063/1.1645654.

    Article  Google Scholar 

  9. Blehm, B. H., A. Devine, J. R. Staunton, and K. Tanner. In vivo tissue has non-linear rheological behavior distinct from 3D biomimetic hydrogels as determined by AMOTIV microscopy. Biomaterials 83:66–78, 2015. doi:10.1016/j.biomaterials.2015.12.019.

    Article  Google Scholar 

  10. Blehm, B. H., T. A. Schroer, K. M. Trybus, Y. R. Chemla, P. R. Selvin, B. H. Blehm, et al. In vivo optical trapping indicates kinesin’s stall force is reduced by dynein during intracellular transport. Proc. Natl. Acad. Sci. 110(23):1–7, 2013. doi:10.1073/pnas.1308350110.

    Google Scholar 

  11. Brau, R. R., J. M. Ferrer, H. Lee, C. E. Castro, and B. K. Tam. Passive and active microrheology with optical tweezers. J. Opt. A: Pure Appl. Opt. 9:S103–S112, 2007. doi:10.1088/1464-4258/9/8/S01.

    Article  Google Scholar 

  12. Bredfeldt, J. S., Y. Liu, M. W. Conklin, P. J. Keely, T. R. Mackie, and K. W. Eliceiri. Automated quantification of aligned collagen for human breast carcinoma prognosis. J. Pathol. Inf. 5:28, 2014. doi:10.4103/2153-3539.139707.

    Article  Google Scholar 

  13. Bredfeldt, J. S., Y. Liu, C. A. Pehlke, M. W. Conklin, J. M. Szulczewski, D. R. Inman, et al. Computational segmentation of collagen fibers from second-harmonic generation images of breast cancer. J. Biomed. Opt. 19(1):16007, 2014. doi:10.1117/1.JBO.19.1.016007.

    Article  Google Scholar 

  14. Breedveld, V., and D. J. Pine. Microrheology as a tool for high-throughput screening. J. Mater. Sci. 38(22):4461–4470, 2003. doi:10.1023/A:1027321232318.

    Article  Google Scholar 

  15. Brábek, J., C. T. Mierke, D. Rösel, P. Veselý, and B. Fabry. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion. Cell Commun. Signal. CCS 8:22, 2010. doi:10.1186/1478-811X-8-22.

    Article  Google Scholar 

  16. Carlisle, C. R., C. Coulais, and M. Guthold. The mechanical stress-strain properties of single electrospun collagen type I nanofibers. Acta Biomater. 6(8):2997–3003, 2010. doi:10.1016/j.actbio.2010.02.050.

    Article  Google Scholar 

  17. Conklin, M. W., J. C. Eickhoff, K. M. Riching, C. A. Pehlke, K. W. Eliceiri, P. P. Provenzano, et al. Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am. J. Pathol. 178(3):1221–1232, 2011. doi:10.1016/j.ajpath.2010.11.076.

    Article  Google Scholar 

  18. Cox, G., E. Kable, A. Jones, I. Fraser, F. Manconi, and M. D. Gorrell. 3-Dimensional imaging of collagen using second harmonic generation. J. Struct. Biol. 141(1):53–62, 2003. doi:10.1016/S1047-8477(02)00576-2.

    Article  Google Scholar 

  19. Cukierman, E., R. Pankov, and K. M. Yamada. Cell interactions with three-dimensional matrices. Curr. Opin. Cell Biol. 14(5):633–639, 2002.

    Article  Google Scholar 

  20. De Wever, O., and M. Mareel. Role of tissue stroma in cancer cell invasion. J. Pathol. 200(4):429–447, 2003. doi:10.1002/path.1398.

    Article  Google Scholar 

  21. Deffieux, T., G. Montaldo, M. Tanter, and M. Fink. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity. IEEE Trans. Med. Imaging 28(3):313–322, 2009. doi:10.1109/TMI.2008.925077.

    Article  Google Scholar 

  22. Doyle, A. D., N. Carvajal, A. Jin, K. Matsumoto, and K. M. Yamada. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat. Commun. 6:8720, 2015. doi:10.1038/ncomms9720.

    Article  Google Scholar 

  23. Doyle, A. D., F. W. Wang, K. Matsumoto, and K. M. Yamada. One-dimensional topography underlies three-dimensional fibrillar cell migration. J. Cell Biol. 184(4):481–490, 2009. doi:10.1083/jcb.200810041.

    Article  Google Scholar 

  24. Egeblad, M., M. G. Rasch, and V. M. Weaver. Dynamic interplay between the collagen scaffold and tumor evolution. Curr. Opin. Cell Biol. 22(5):697–706, 2010. doi:10.1016/j.ceb.2010.08.015.

    Article  Google Scholar 

  25. Entenberg, D., Kedrin, D., Wyckoff, J., Sahai, E., Condeelis, J., & Segall, J. E. (2013). Imaging tumor cell movement in vivo. Curr. Protoc. Cell Biol. Chapter 19, Unit19.7. 10.1002/0471143030.cb1907s58.

  26. Ewoldt, R. H., A. E. Hosoi, and G. H. Mckinley. New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear (LAOS). J. Rheol. 52:1427, 2008.

    Article  Google Scholar 

  27. Ewoldt, R. H., P. Winter, J. Maxey, and G. H. Mckinley. Large amplitude oscillatory shear of pseudoplastic and elastoviscoplastic materials. Rheol. Acta 49:191–212, 2010.

    Article  Google Scholar 

  28. Fabry, B., G. Maksym, J. Butler, M. Glogauer, D. Navajas, N. Taback, et al. Time scale and other invariants of integrative mechanical behavior in living cells. Phys. Rev. E 68(4):1–18, 2003. doi:10.1103/PhysRevE.68.041914.

    Article  Google Scholar 

  29. Farré, A., and M. Montes-usategui. A force detection technique for single-beam optical traps based on direct measurement of light momentum changes. Opt. Exp. 18(11):2382–2391, 2010.

    Article  Google Scholar 

  30. Fidler, I. J. The pathogenesis of cancer metastasis: the “seed and soil” hypothesis revisited. Nat. Rev. Cancer 3(6):453–458, 2003. doi:10.1038/nrc1098.

    Article  Google Scholar 

  31. Fischer, M., and K. Berg-sørensen. Calibration of trapping force and response function of optical tweezers in viscoelastic media. J. Opt. A 9(8): S239. Retrieved from http://stacks.iop.org/1464-4258/9/i=8/a=S18, 2007

  32. Fraley, S. I., P. Wu, L. He, Y. Feng, R. Krisnamurthy, G. D. Longmore, and D. Wirtz. Three-dimensional matrix fiber alignment modulates cell migration and MT1-MMP utility by spatially and temporally directing protrusions. Sci. Rep. 5:14580, 2015.

    Article  Google Scholar 

  33. Fratzl, P., K. Misof, I. Zizak, G. Rapp, H. Amenitsch, and S. Bernstorff. Fibrillar structure and mechanical properties of collagen. J. Struct. Biol. 122(1–2):119–122, 1998. doi:10.1006/jsbi.1998.3966.

    Article  Google Scholar 

  34. Friedl, P., and S. Alexander. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 147(5):992–1009, 2011. doi:10.1016/j.cell.2011.11.016.

    Article  Google Scholar 

  35. Friedl, P., and K. Wolf. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3(May):362–374, 2003. doi:10.1038/nrc1075.

    Article  Google Scholar 

  36. Friedl, P., and K. Wolf. Proteolytic interstitial cell migration: a five-step process. Cancer Metastasis Rev. 28(1–2):129–135, 2009. doi:10.1007/s10555-008-9174-3.

    Article  Google Scholar 

  37. Gentleman, E., A. N. Lay, D. A. Dickerson, E. A. Nauman, G. A. Livesay, and K. C. Dee. Mechanical characterization of collagen fibers and scaffolds for tissue engineering. Biomaterials 24(21):3805–3813, 2003. doi:10.1016/S0142-9612(03)00206-0.

    Article  Google Scholar 

  38. Gilkes, D. M., P. Chaturvedi, S. Bajpai, C. C. Wong, H. Wei, S. Pitcairn, et al. Collagen prolyl hydroxylases are essential for breast cancer metastasis. Cancer Res. 73(11):3285–3296, 2013. doi:10.1158/0008-5472.CAN-12-3963.

    Article  Google Scholar 

  39. Gittes, F., and C. F. Schmidt. Interference model for back-focal-plane displacement detection in optical tweezers. Opt. Lett. 23(1):7–9, 1998.

    Article  Google Scholar 

  40. Granek, R., and M. E. Cates. Stress relaxation in living polymers: results from a Poisson renewal model. J. Chem. Phys. 96:4758, 1992. doi:10.1063/1.462787.

    Article  Google Scholar 

  41. Grange, W., S. Husale, H. Güntherodt, and M. Hegner. Optical tweezers system measuring the change in light momentum flux. Rev. Sci. Instrum. 73(6):2308, 2002. doi:10.1063/1.1477608.

    Article  Google Scholar 

  42. Guthold, M., W. Liu, E. A. Sparks, L. M. Jawerth, L. Peng, M. Falvo, et al. A comparison of the mechanical and structural properties of fibrin fibers with other protein fibers. Cell Biochem. Biophys. 49(3):165–181, 2007. doi:10.1007/s12013-007-9001-4.

    Article  Google Scholar 

  43. Gutsmann, T., G. E. Fantner, J. H. Kindt, M. Venturoni, S. Danielsen, and P. K. Hansma. Force spectroscopy of collagen fibers to investigate their mechanical properties and structural organization. Biophys. J. 86(5):3186–3193, 2004. doi:10.1016/S0006-3495(04)74366-0.

    Article  Google Scholar 

  44. Jawerth, L. M., S. Munster, D. A. Vader, B. Fabry, and D. A. Weitz. A blind spot in confocal reflection microscopy: the dependence of fiber brightness on fiber orientation in imaging biopolymer networks. Biophys. J. 98(3):3–5, 2010. doi:10.1016/j.bpj.2009.09.065.

    Google Scholar 

  45. Jun, Y., S. K. Tripathy, B. R. J. Narayanareddy, M. K. Mattson-hoss, and S. P. Gross. Article calibration of optical tweezers for in vivo force measurements: how do different approaches compare? Biophys. J. 107(6):1474–1484, 2014. doi:10.1016/j.bpj.2014.07.033.

    Article  Google Scholar 

  46. Kadler, K. E., D. F. Holmes, J. A. Trotter, and J. A. Chapman. Collagen fibril formation. J. Biochem. 316(Pt 1):1–11, 1996.

    Article  Google Scholar 

  47. Kalluri, R., and M. Zeisberg. Fibroblasts in cancer. Nat. Rev. Cancer 6(5):392–401, 2006. doi:10.1038/nrc1877.

    Article  Google Scholar 

  48. Kamm, R. D., and M. R. Mofrad. In: Cytoskeletal Mechanics: Models and Measurements1st, edited by R. D. Kamm, and M. R. Mofrad. New York: Cambridge University Press, 2006.

    Google Scholar 

  49. Kasza, K. E., A. C. Rowat, J. Liu, T. E. Angelini, C. P. Brangwynne, G. H. Koenderink, and D. A. Weitz. The cell as a material. Curr. Opin. Cell Biol. 19(1):101–107, 2007. doi:10.1016/j.ceb.2006.12.002.

    Article  Google Scholar 

  50. Keely, P. J. Mechanisms by which the extracellular matrix and integrin signaling act to regulate the switch between tumor suppression and tumor promotion. J Mammary Gland Biol Neoplasia 16(3):205–219, 2011. doi:10.1007/s10911-011-9226-0.

    Article  Google Scholar 

  51. Khanna, C., R. G. Wells, E. Puré, and S. W. Volk. Type III collagen directs stromal organization and limits metastasis in a murine model of breast cancer. Am. J. Pathol. 185(5):1, 2015.

    Article  Google Scholar 

  52. Kim, J., J. R. Staunton, and K. Tanner. Independent control of topography for 3D patterning of the ECM microenvironment. Adv. Mater. 28:132–137, 2015. doi:10.1002/adma.201503950.

    Article  Google Scholar 

  53. Kolahi, K. S., and M. R. K. Mofrad. Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdiscip. Rev. 2(6):625–639, 2010. doi:10.1002/wsbm.79.

    Google Scholar 

  54. Kotlarchyk, M. A., E. L. Botvinick, and A. J. Putnam. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging. J. Phys.: Condens. Matter 22(19):194121, 2010. doi:10.1088/0953-8984/22/19/194121.

    Google Scholar 

  55. Kotlarchyk, M. A., S. G. Shreim, M. B. Alvarez-Elizondo, L. C. Estrada, R. Singh, L. Valdevit, et al. Concentration independent modulation of local micromechanics in a fibrin gel. PLoS One 6(5):e20201, 2011. doi:10.1371/journal.pone.0020201.

    Article  Google Scholar 

  56. Leight, J. L., M. A. Wozniak, S. Chen, M. L. Lynch, and C. S. Chen. Matrix rigidity regulates a switch between TGF-1-induced apoptosis and epithelial-mesenchymal transition. Mol. Biol. Cell 23(5):781–791, 2012. doi:10.1091/mbc.E11-06-0537.

    Article  Google Scholar 

  57. Levental, I., P. C. Georges, and P. A. Janmey. Soft biological materials and their impact on cell function. Soft Matter 3(3):299–306, 2007. doi:10.1039/b610522j.

    Article  Google Scholar 

  58. Levental, K. R., H. Yu, L. Kass, J. N. Lakins, M. Egeblad, J. T. Erler, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906, 2009. doi:10.1016/j.cell.2009.10.027.

    Article  Google Scholar 

  59. Liu, J., M. L. Gardel, K. Kroy, E. Frey, B. D. Hoffman, J. C. Crocker, et al. Microrheology probes length scale dependent rheology. Phys. Rev. Lett. 96(11):118104, 2006. doi:10.1103/PhysRevLett.96.118104.

    Article  Google Scholar 

  60. Lu, P., V. M. Weaver, and Z. Werb. The extracellular matrix: a dynamic niche in cancer progression. J. Cell Biol. 196(4):395–406, 2012. doi:10.1083/jcb.201102147.

    Article  Google Scholar 

  61. MacKintosh, F. C., J. Käs, and P. A. Janmey. Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75(24):4425, 1995.

    Article  Google Scholar 

  62. Mak, M., R. D. Kamm, and M. H. Zaman. Impact of dimensionality and network disruption on microrheology of cancer cells in 3D environments. PLoS Comput. Biol. 10(11):e1003959, 2014. doi:10.1371/journal.pcbi.1003959.

    Article  Google Scholar 

  63. Mason, T., K. Ganesan, J. van Zanten, D. Wirtz, and S. Kuo. Particle tracking microrheology of complex fluids. Phys. Rev. Lett. 79(17):3282–3285, 1997. doi:10.1103/PhysRevLett.79.3282.

    Article  Google Scholar 

  64. Mason, T. G., and D. A. Weitz. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74(7):1250–1253, 1995.

    Article  Google Scholar 

  65. Mickel, W., S. Münster, L. M. Jawerth, D. A. Vader, D. A. Weitz, A. P. Sheppard, et al. Robust pore size analysis of filamentous networks from three-dimensional confocal microscopy. Biophys. J. 95(12):6072–6080, 2008. doi:10.1529/biophysj.108.135939.

    Article  Google Scholar 

  66. Motte, S., and L. J. Kaufman. Strain stiffening in collagen I networks. Biopolymers 99(1):35–46, 2013. doi:10.1002/bip.22133.

    Article  Google Scholar 

  67. Mouw, J. K., G. Ou, and V. M. Weaver. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15(12):771–785, 2014. doi:10.1038/nrm3902.

    Article  Google Scholar 

  68. Münster, S., L. M. Jawerth, B. A. Leslie, J. I. Weitz, B. Fabry, and D. A. Weitz. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl. Acad. Sci. USA 110(30):1–6, 2013. doi:10.1073/pnas.1222787110.

    Article  Google Scholar 

  69. Ng, M. R., and J. S. Brugge. A stiff blow from the stroma: collagen crosslinking drives tumor progression. Cancer Cell 16(6):455–457, 2009. doi:10.1016/j.ccr.2009.11.013.

    Article  Google Scholar 

  70. Paget, S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 8(2):98–101, 1989.

    Google Scholar 

  71. Pathak, A., and S. Kumar. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr. Biol. 3(4):267–278, 2011. doi:10.1039/C0IB00095G.

    Article  Google Scholar 

  72. Patsialou, A., J. J. Bravo-Cordero, Y. Wang, D. Entenberg, H. Liu, M. Clarke, and J. S. Condeelis. Intravital multiphoton imaging reveals multicellular streaming as a crucial component of in vivo cell migration in human breast tumors. Intravital 2(2):e25294, 2013. doi:10.4161/intv.25294.

    Article  Google Scholar 

  73. Pedersen, J. A., and M. A. Swartz. Mechanobiology in the third dimension. Ann. Biomed. Eng. 33(11):1469–1490, 2005. doi:10.1007/s10439-005-8159-4.

    Article  Google Scholar 

  74. Peterman, E. J. G., F. Gittes, and C. F. Schmidt. Laser-induced heating in optical traps. Biophys. J. 84(February):1308–1316, 2003.

    Article  Google Scholar 

  75. Petrie, R. J., H. Koo, and K. M. Yamada. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix. Science 345(6200):1062–1065, 2014. doi:10.1126/science.1256965.

    Article  Google Scholar 

  76. Pickup, M. W., J. K. Mouw, and V. M. Weaver. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15(12):1243–1253, 2014. doi:10.15252/embr.201439246.

    Article  Google Scholar 

  77. Plodinec, M., M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, et al. The nanomechanical signature of breast cancer. Nat. Nano 7(11):757–765, 2012. doi:10.1038/nnano.2012.167.

    Article  Google Scholar 

  78. Plodinec, M., M. Loparic, C. A. Monnier, E. C. Obermann, R. Zanetti-Dallenbach, P. Oertle, et al. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7(11):757–765, 2012. doi:10.1038/nnano.2012.167.

    Article  Google Scholar 

  79. Plotnick, R. E., R. H. Gardner, W. W. Hargrove, K. Prestegaard, and M. Perlmutter. Lacunarity analysis: a general technique for the analysis of spatial patterns. Phys. Rev. E 53(5):5461–5468, 1996. doi:10.1103/PhysRevE.53.5461.

    Article  Google Scholar 

  80. Provenzano, P. P., K. W. Eliceiri, J. M. Campbell, D. R. Inman, J. G. White, and P. J. Keely. Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Med. 4(1):38, 2006. doi:10.1186/1741-7015-4-38.

    Article  Google Scholar 

  81. Raub, C. B., V. Suresh, T. Krasieva, J. Lyubovitsky, J. D. Mih, A. J. Putnam, et al. Noninvasive assessment of collagen gel microstructure and mechanics using multiphoton microscopy. Biophys. J. 92(6):2212–2222, 2007. doi:10.1529/biophysj.106.097998.

    Article  Google Scholar 

  82. Raub, C. B., J. Unruh, V. Suresh, T. Krasieva, T. Lindmo, E. Gratton, et al. Image correlation spectroscopy of multiphoton images correlates with collagen mechanical properties. Biophys. J. 94(6):2361–2373, 2008. doi:10.1529/biophysj.107.120006.

    Article  Google Scholar 

  83. Roeder, B. A., K. Kokini, J. E. Sturgis, J. P. Robinson, and S. L. Voytik-Harbin. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J. Biomech. Eng. 124:214–222, 2002. doi:10.1115/1.1449904.

    Article  Google Scholar 

  84. Schedin, P., and P. J. Keely. Mammary gland ECM remodeling, stiffness, and mechanosignaling in normal development and tumor progression. Cold Spring Harb. Perspect. Biol. 3(1):a003228, 2011. doi:10.1101/cshperspect.a003228.

    Article  Google Scholar 

  85. Shen, Z. L., M. R. Dodge, H. Kahn, R. Ballarini, and S. J. Eppell. Stress-strain experiments on individual collagen fibrils. Biophys. J. 95(8):3956–3963, 2008. doi:10.1529/biophysj.107.124602.

    Article  Google Scholar 

  86. Shoulders, M. D., and R. T. Raines. Collagen structure and stability. Annu. Rev. Biochem. 78:929–958, 2009. doi:10.1146/annurev.biochem.77.032207.120833.

    Article  Google Scholar 

  87. Sollich, P. Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E 58(1):738–759, 1998. doi:10.1103/PhysRevE.58.738.

    Article  Google Scholar 

  88. Sollich, P., F. Lequeux, P. Hébraud, and M. Cates. Rheology of soft glassy materials. Phys. Rev. Lett. 78(10):2020–2023, 1997. doi:10.1103/PhysRevLett.78.2020.

    Article  Google Scholar 

  89. Squires, T. M., and T. G. Mason. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42:413–438, 2010. doi:10.1146/annurev-fluid-121108-145608.

    Article  Google Scholar 

  90. Staunton, J. R., B. L. Doss, S. Lindsay, and R. Ros. Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Sci. Rep. 6:19686, 2016. doi:10.1038/srep19686.

    Article  Google Scholar 

  91. Storm, C., J. J. Pastore, F. MacKintosh, T. Lubensky, and P. A. Jamney. Nonlinear elasticity in biological gels. Nature 435:191–194, 2005. doi:10.1038/nature03497.1.

    Article  Google Scholar 

  92. Stroka, K. M., H. Jiang, S.-H. Chen, Z. Tong, D. Wirtz, S. X. Sun, and K. Konstantopoulos. Water permeation drives tumor cell migration in confined microenvironments. Cell 157(3):611–623, 2014. doi:10.1016/j.cell.2014.02.052.

    Article  Google Scholar 

  93. Sun, Y. L., Z. P. Luo, A. Fertala, and K. N. An. Direct quantification of the flexibility of type I collagen monomer. Biochem. Biophys. Res. Commun. 295(2):382–386, 2002. doi:10.1016/S0006-291X(02)00685-X.

    Article  Google Scholar 

  94. Svoboda, K., and S. M. Block. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23:247–285, 1994. doi:10.1146/annurev.bb.23.060194.001335.

    Article  Google Scholar 

  95. Tanner, K., and M. M. Gottesman. Beyond 3D culture models of cancer. Sci. Transl. Med. 7(283):283ps9, 2015. doi:10.1126/scitranslmed.3009367.

    Article  Google Scholar 

  96. Tilbury, K., and P. J. Campagnola. Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect. Med. Chem. 7:21–32, 2015. doi:10.4137/PMC.S13214.

    Google Scholar 

  97. Tolle, C. R., T. R. McJunkin, and D. J. Gorsich. An efficient implementation of the gliding box lacunarity algorithm. Physica D 237(3):306–315, 2008. doi:10.1016/j.physd.2007.09.017.

    Article  MathSciNet  MATH  Google Scholar 

  98. van Kempen, L. C., D. J. Ruiter, G. N. van Muijen, and L. M. Coussens. The tumor microenvironment: a critical determinant of neoplastic evolution. Eur. J. Cell Biol. 82(11):539–548, 2003. doi:10.1078/0171-9335-00346.

    Article  Google Scholar 

  99. Wallace, D. G., and J. Rosenblatt. Collagen gel systems for sustained delivery and tissue engineering. Adv. Drug Deliv. Rev. 55(12):1631–1649, 2003.

    Article  Google Scholar 

  100. Weber, F., L. Shen, K. Fukino, A. Patocs, G. L. Mutter, T. Caldes, and C. Eng. Total-genome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am. J. Hum. Genet. 78(6):961–972, 2006. doi:10.1086/504090.

    Article  Google Scholar 

  101. Wenger, M. P. E., L. Bozec, M. A. Horton, and P. Mesquida. Mechanical properties of collagen fibrils. Biophys. J. 93(4):1255–1263, 2007. doi:10.1529/biophysj.106.103192.

    Article  Google Scholar 

  102. Werb, Z., and P. Lu. The role of stroma in tumor development. Cancer J. 21(4):250–253, 2015. doi:10.1097/PPO.0000000000000127.

    Article  Google Scholar 

  103. Williams, B. R., R. A. Gelman, D. C. Poppke, and K. A. Piez. Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J. Biol. Chem. 253(18):6578–6585, 1978

    Google Scholar 

  104. Wirtz, D. Particle-tracking microrheology of living cells: principles and applications. Ann. Rev. Biophys. 38:301–326, 2009. doi:10.1146/annurev.biophys.050708.133724.

    Article  Google Scholar 

  105. Wolf, K., M. te Lindert, M. Krause, S. Alexander, J. te Riet, A. L. Willis, et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201(7):1069–1084, 2013. doi:10.1083/jcb.201210152.

    Article  Google Scholar 

  106. Xu, R., A. Boudreau, and M. J. Bissell. Tissue architecture and function: dynamic reciprocity via extra- and intra-cellular matrices. Cancer Metastasis Rev. 28(1–2):167–176, 2009. doi:10.1007/s10555-008-9178-z.

    Article  Google Scholar 

  107. Zoumi, A., A. Yeh, and B. J. Tromberg. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proc. Natl. Acad. Sci. USA 99(17):11014–11019, 2002. doi:10.1073/pnas.172368799.

    Article  Google Scholar 

Download references

Acknowledgments

This effort was supported by the Intramural Research Program of the National Institutes of Health, the National Cancer Institute. We thank Ben Blehm for helpful technical discussions and George Leiman for critical reading of the manuscript. We also thank Daniel Blair, and Xinran Zhang of Georgetown University for assistance with bulk rheometry.

Conflict of interest

Dr. Tanner and Alexus Devine have an international stage PCT application pending. Jack R Staunton, Wilfred Vieira, King Leung Fung and Ross Lake, all declare that they have no conflict of interest.

Ethical Statements

Animal studies were conducted under protocols approved by the National Cancer Institute, and the National Institutes of Health Animal Care and Use Committee. No human subjects research was performed in this studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kandice Tanner.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Kandice Tanner received her doctoral degree in Physics at the University of Illinois, Urbana-Champaign under Professor Enrico Gratton. She completed post-doctoral training at the University of California, Irvine specializing in dynamic imaging of thick tissues. She then became a Department of Defense Breast Cancer Post-doctoral fellow jointly at University of California, Berkeley and Lawrence Berkeley National Laboratory under Dr. Mina J. Bissell. Dr. Tanner joined the National Cancer Institute as a Stadtman Tenure-Track Investigator in July, 2012, where she integrates concepts from molecular biophysics and cell biology to learn how cells and tissues sense and respond to their physical microenvironment, and to thereby design therapeutics and cellular biotechnology. For her work, she has been awarded the 2013 National Cancer Institute Director’s Intramural Innovation Award, the 2015 NCI Leading Diversity award and the 2016 Young Fluorescence Investigator award from the Biophysical Society, She currently serves on the Membership Committee of the American Society of Cell Biology, the Minority Affairs Committee of the Biophysical Society and is a Member at large for the Division of Biological Physics of the American Physical Society.

This article is part of the 2016 Young Innovators Issue.

figure a

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Staunton, J.R., Vieira, W., Fung, K.L. et al. Mechanical Properties of the Tumor Stromal Microenvironment Probed In Vitro and Ex Vivo by In Situ-Calibrated Optical Trap-Based Active Microrheology. Cel. Mol. Bioeng. 9, 398–417 (2016). https://doi.org/10.1007/s12195-016-0460-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-016-0460-9

Keywords

Navigation