Skip to main content
Log in

A Comparison of the Mechanical and Structural Properties of Fibrin Fibers with Other Protein Fibers

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

In the past few years a great deal of progress has been made in studying the mechanical and structural properties of biological protein fibers. Here, we compare and review the stiffness (Young’s modulus, E) and breaking strain (also called rupture strain or extensibility, εmax) of numerous biological protein fibers in light of the recently reported mechanical properties of fibrin fibers. Emphasis is also placed on the structural features and molecular mechanisms that endow biological protein fibers with their respective mechanical properties. Generally, stiff biological protein fibers have a Young’s modulus on the order of a few Gigapascal and are not very extensible (εmax < 20%). They also display a very regular arrangement of their monomeric units. Soft biological protein fibers have a Young’s modulus on the order of a few Megapascal and are very extensible (εmax > 100%). These soft, extensible fibers employ a variety of molecular mechanisms, such as extending amorphous regions or unfolding protein domains, to accommodate large strains. We conclude our review by proposing a novel model of how fibrin fibers might achieve their extremely large extensibility, despite the regular arrangement of the monomeric fibrin units within a fiber. We propose that fibrin fibers accommodate large strains by two major mechanisms: (1) an α-helix to β-strand conversion of the coiled coils; (2) a partial unfolding of the globular C-terminal domain of the γ-chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu, W., Jawerth, L. M., Sparks, E. A., Falvo, M. R., Hantgan, R. R., Superfine, R., Lord, S. T., & Guthold, M. (2006). Fibrin fibers have extraordinary extensibility and elasticity. Science, 313, 634.

    Article  PubMed  CAS  Google Scholar 

  2. Collet, J. P., Shuman, H., Ledger, R. E., Lee, S. T., & Weisel, J. W. (2005). The elasticity of an individual fibrin fiber in a clot. Proceedings of the National Academy of Sciences of the United States of America, 102, 9133.

    Article  PubMed  CAS  Google Scholar 

  3. Weisel, J. W. (1986). The electron-microscope band pattern of hman fibrin—various stains, lateral order, and carbohydrate localization. Journal of Ultrastructure and Molecular Structure Research, 96, 176.

    Article  PubMed  CAS  Google Scholar 

  4. Hantgan, R. R., Fowler, S. B., Erickson, H. P., & Hermans, J. (1980). Fibrin assembly: A comparison of electron microscopic and light scattering results. Thrombosis and Haemostasis, 44, 119.

    PubMed  CAS  Google Scholar 

  5. Spraggon, G., Everse, S. J., & Doolittle, R. F. (1997). Crystal structures of fragment D from human fibrinogen and its crosslinked counterpart from fibrin. Nature, 389, 455.

    Article  PubMed  CAS  Google Scholar 

  6. Brown, J. H., Volkmann, N., Jun, G., Henschen-Edman, A. H., & Cohen, C. (2000). The crystal structure of modified bovine fibrinogen. Proceedings of the National Academy of Sciences of the United States of America, 97, 85.

    Article  PubMed  CAS  Google Scholar 

  7. Yang, Z., Kollman, J. M., Pandi, L., & Doolittle, R. F. (2001). Crystal structure of native chicken fibrinogen at 2.7 angstrom resolution. Biochemistry, 40, 12515.

    Article  PubMed  CAS  Google Scholar 

  8. Braaten, J. V., Jerome, W. G., & Hantgan, R. R. (1994). Uncoupling fibrin from integrin receptors Hastens fibrinolysis at the platelet-fibrin interface. Blood, 83, 982.

    PubMed  CAS  Google Scholar 

  9. Doolittle, R. F. (2003). X-ray crystallographic studies on fibrinogen and fibrin. Journal of Thrombosis and Haemostasis, 1, 1559.

    Article  PubMed  CAS  Google Scholar 

  10. Williams, R. C. (1981). Morphology of bovine fibrinogen monomers and fibrin oligomers. Journal of Molecular Biology, 150, 399.

    Article  PubMed  CAS  Google Scholar 

  11. Hall, C. E., & Slayter, H. S. (1959). The fibrinogen molecule: its size, shape, and mode of polymerization. The Journal of Biophysical and Biochemical Cytology 5, 11.

    Article  PubMed  CAS  Google Scholar 

  12. Tsurupa, G., Tsonev, L., & Medved, L. (2002). Structural organization of the fibrin(ogen) alpha C-domain. Biochemistry, 41, 6449.

    Article  PubMed  CAS  Google Scholar 

  13. Doolittle, R. F., & Kollman, J. M. (2006). Natively unfolded regions of the vertebrate fibrinogen molecule. Proteins-Structure Function and Bioinformatics, 63, 391.

    Article  CAS  Google Scholar 

  14. Burton, R. A., Tsurupa, G., Medved, L., & Tjandra, N. (2006). Identification of an ordered compact structure within the recombinant bovine fibrinogen alpha C-domain fragment by NMRT. Biochemistry, 45, 2257.

    Article  PubMed  CAS  Google Scholar 

  15. Yee, V. C., Pratt, K. P., Cote, H. C. F., LeTrong, I., Chung, D. W., Davie, E. W., Stenkamp, R. E., & Teller, D. C. (1997). Crystal structure of a 30 kDa C-terminal fragment from the gamma chain of human fibrinogen. Structure, 5, 125.

    Article  PubMed  CAS  Google Scholar 

  16. Everse, S. J., Spraggon, G., Veerapandian, L., & Doolittle, R. F. (1999). Conformational changes in fragments D and double-D from human fibrin(ogen) upon binding the peptide ligand Gly-His-Arg-Pro- amide. Biochemistry, 38, 2941.

    Article  PubMed  CAS  Google Scholar 

  17. Doolittle, R. F., Chen, A., & Pandi, L. (2006). Differences in binding specificity for the homologous gamma- and beta-chain “Holes” on fibrinogen: Exclusive binding of Ala-His-Arg-Pro-amide by the beta-chain hole. Biochemistry, 45, 13962.

    Article  PubMed  CAS  Google Scholar 

  18. Ferry, J. D. (1952). The mechanism of polymerization of fibrin. Proceedings of the National Academy of Sciences of the Untied States of America, 38, 566.

    Article  CAS  Google Scholar 

  19. Hantgan, R. R., & Hermans, J. (1979). Assembly of Fibrin—Light-scattering study. Journal of Biological Chemistry, 254, 11272.

    PubMed  CAS  Google Scholar 

  20. Ryan, E. A., Mockros, L. F., Weisel, J. W., & Lorand, L. (1999). Structural origins of fibrin clot rheology. Biophysical Journal, 77, 2813.

    PubMed  CAS  Google Scholar 

  21. Carr, M. E., & Hermans, J. (1978). Size and density of fibrin fibers from turbidity. Macromolecules, 11, 46.

    Article  PubMed  CAS  Google Scholar 

  22. Blomback, B., Blomback, M., & Nillson, I. M. (1957). Coagulation studies on reptilase, an extract of the venom from Bothrops jararaca. Thrombosis et Diathesis Haemorrhagica, 1, 76.

    Google Scholar 

  23. Chen, R., & Doolittle, R. F. (1971). Gamma-gamma crosslinking sites in human and bovine fibrin. Biochemistry, 10, 15610.

    Google Scholar 

  24. McKee, P. A., Mattock, P., & Hill, R. L. (1970). Subunit structure of human fibrinogen, soluble fibrin, and cross-linked insoluble fibrin. Proceedings of the National Academy of Sciences of the United States of America, 66, 738.

    Article  PubMed  CAS  Google Scholar 

  25. Lorand, L. (2001). Factor XIII: Structure, activation, and interactions with fibrinogen and fibrin. Annals of the New York Academy of Sciences, 936, 291.

    Article  PubMed  CAS  Google Scholar 

  26. Sobel, J. H., & Gawinowicz, M. A. (1996). Identification of the alpha chain lysine donor sites involved in factor XIIIa fibrin cross-linking. The Journal of Biological Sciences, 271, 19288.

    CAS  Google Scholar 

  27. Matsuka, Y. V., Medved, L. V., Migliorini, M. M., & Ingham, K. C. (1996). Factor XIIIa-catalyzed cross-linking of recombinant alpha C fragments of human fibrinogen. Biochemistry, 35, 5810.

    Article  PubMed  CAS  Google Scholar 

  28. Murthy, S. N. P., Wilson, J. H., Lukas, T. J., Veklich, Y., Weisel, J. W., & Lorand, L. (2000). Transglutaminase-catalyzed crosslinking of the alpha and gamma constituent chains in fibrinogen. Proceedings of the National Academy of Sciences of the United States of America, 97, 44.

    Article  PubMed  CAS  Google Scholar 

  29. Doolittle, R. F. (2003). Structural basis of the fibrinogen-fibrin transformation: Contributions from X-ray crystallography. Blood Reviews, 17, 33.

    Article  PubMed  Google Scholar 

  30. Yang, Z., Mochalkin, I., & Doolittle, R. F. (2000). A model of fibrin formation based on crystal structures of fibrinogen and fibrin fragments complexed with synthetic peptides. Proceedings of the National Academy of Sciences of the United States of America, 97, 14156.

    Article  PubMed  CAS  Google Scholar 

  31. Caracciolo, G., De Spirito, M., Castellano, A. C., Pozzi, D., Amiconi, G., De Pascalis, A., Caminiti, R., & Arcovito, G. (2003). Protofibrils within fibrin fibres are packed together in a regular array. Thrombosis and Haemostasis, 89, 632.

    PubMed  CAS  Google Scholar 

  32. Guthold, M., Liu, W., Stephens, B., Lord, S. T., Hantgan, R. R., Erie, D. A., Taylor, R. M., & Superfine, R. (2004). Visualization and mechanical manipulations of individual fibrin fibers suggest that fiber cross section has fractal dimension 1.3. Biophysical Journal, 87, 4226.

    Article  PubMed  CAS  Google Scholar 

  33. Brown, A. E. X., Litvinov, R. I., Discher, D. E., & Weisel, J. W. (2007). Forced Unfolding of Coiled-Coils in Fibrinogen by Single-Molecule AFM. Biophysical Journal, 92, L30.

    Google Scholar 

  34. Craig, C. L. (2003). Spiderwebs and silk. New York: Oxford University Press.

    Google Scholar 

  35. Gosline, J. M., Guerette, P. A., Ortlepp, C. S., & Savage, K. N. (1999). The mechanical design of spider silks: From fibroin sequence to mechanical function. Journal of Experimental Biology, 202, 3295.

    PubMed  CAS  Google Scholar 

  36. Denny, M. (1976). Physical-properties of spiders silk and their role in design of orb-webs. Journal of Experimental Biology, 65, 483.

    Google Scholar 

  37. Termonia, Y. (1994). Molecular modeling of spider silk elasticity. Macromolecules, 27, 7378.

    Article  CAS  Google Scholar 

  38. Hinman, M. B., Jones, J. A., & Lewis, R. V. (2000). Synthetic spider silk: A modular fiber. Trends in Biotechnology, 18, 374.

    Article  PubMed  CAS  Google Scholar 

  39. Hayashi, C. Y., & Lewis, R. V. (1998). Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. Journal of Molecular Biology, 275, 773.

    Article  PubMed  CAS  Google Scholar 

  40. Gosline, J. M. (1980). The elastic properties of rubber-like proteins and highly extensible tissues Cambridge: Cambridge University Press.

    Google Scholar 

  41. Aaron, B. B., & Gosline, J. M. (1981). Elastin as a random-network elastomer—a mechanical and optical analysis of single elastin fibers. Biopolymers, 20, 1247.

    Article  CAS  Google Scholar 

  42. Hoeve, C. A. J., & Flory, P. J. (1974). Elastic properties of elastin. Biopolymers, 13, 677.

    Article  PubMed  CAS  Google Scholar 

  43. Urry, D. W., Hugel, T., Seitz, M., Gaub, H. E., Sheiba, L., Dea, J., Xu, J., & Parker, T. (2002). Elastin: A representative ideal protein elastomer. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 357, 169.

    Article  CAS  Google Scholar 

  44. Li, B., & Daggett, V. (2002). Molecular basis for the extensibility of elastin. Journal of Muscle Research and Cell Motility, 23, 561.

    Article  PubMed  Google Scholar 

  45. Rosenbloom, J., Abrams, W. R., & Mecham, R. (1993). Extracellular-matrix. 4. The Elastic Fiber. Faseb Journal, 7, 1208.

    PubMed  CAS  Google Scholar 

  46. Gosline, J., Lillie, M., Carrington, E., Guerette, P., Ortlepp, C., & Savage, K. (2002). Elastic proteins: Biological roles and mechanical properties. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 357, 121.

    Article  CAS  Google Scholar 

  47. Weis-Fogh, T. (1961). Molecular interpretation of the elasticity of resilin, a rubber-like proteinn. Journal of Molecular Biology, 3, 648.

    Article  CAS  Google Scholar 

  48. Elvin, C. M., Carr, A. G., Huson, M. G., Maxwell, J. M., Pearson, R. D., Vuocolo, T., Liyou, N. E., Wong, D. C. C., Merritt, D. J., & Dixon, N. E. (2005). Synthesis and properties of crosslinked recombinant pro-resilin. Nature, 437, 999.

    Article  PubMed  CAS  Google Scholar 

  49. Fudge, D. S., Gardner, K. H., Forsyth, V. T., Riekel, C., & Gosline, J. M. (2003). The mechanical properties of hydrated intermediate filaments: Insights from hagfish slime threads. Biophysical Journal 85, 2015.

    PubMed  CAS  Google Scholar 

  50. Fudge, D. S., & Gosline, J. M. (2004). Molecular design of the alpha-keratin composite: Insights from a matrix-free model, hagfish slime threads. Proceedings of the Royal Society of London Series B-Biological Sciences, 271, 291.

    Article  CAS  Google Scholar 

  51. Kreplak, L., Bar, H., Leterrier, J. F., Herrmann, H., & Aebi, U. (2005). Exploring the mechanical behavior of single intermediate filaments. Journal of Molecular Biology, 354, 569.

    PubMed  CAS  Google Scholar 

  52. Mucke, N., Kreplak, L., Kirmse, R., Wedig, T., Herrmann, H., Aebi, U., & Langowski, J. (2004). Assessing the flexibility of intermediate filaments by atomic force microscopy. Journal of Molecular Biology, 335, 1241.

    Article  PubMed  CAS  Google Scholar 

  53. Kreplak, L., & Fudge, D. (2007). Biomechanical properties of intermediate filaments: From tissues to single filaments and back. Bioessays, 29, 26.

    Article  PubMed  CAS  Google Scholar 

  54. Baldock, C., Koster, A. J., Ziese, U., Rock, M. J., Sherratt, M. J., Kadler, K. E., Shuttleworth, C. A., & Kielty, C. M. (2001). The supramolecular organization of fibrillin-rich microfibrils. The Journal of Cell Biology, 152, 1045.

    Article  PubMed  CAS  Google Scholar 

  55. Lu, Y., Holmes, D. F., & Baldock, C. (2005). Evidence for the intramolecular pleating model of fibrillin microfibril organisation from single particle image analysis. Journal of Molecular Biology, 349, 73.

    Article  PubMed  CAS  Google Scholar 

  56. Sherratt, M. J., Baldock, C., Haston, J. L., Holmes, D. F., Jones, C. J. P., Shuttleworth, C. A., Wess, T. J., & Kielty, C. M. (2003). Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. Journal of Molecular Biology, 332, 183.

    Article  PubMed  CAS  Google Scholar 

  57. Megill, W. M., Gosline, J. M., & Blake, R. W. (2005). The modulus of elasticity of fibrillin-containing elastic fibres in the mesoglea of the hydromedusa Pollyorchis penicillatus. Journal of Experimental Biology, 208, 3819.

    Article  PubMed  Google Scholar 

  58. Wright, D. M., Duance, V. C., Wess, T. J., Kielty, C. M., & Purslow, P. P. (1999). The supramolecular organisation of fibrillin-rich microfibrils determines the mechanical properties of bovine zonular filaments. Journal of Experimental Biology, 202, 3011.

    PubMed  CAS  Google Scholar 

  59. Wang, K., McCarter, R., Wright, J., Beverly, J., & Ramirezmitchell, R. (1993). Viscoelasticity of the sarcomere matrix of skeletal-muscles—the titin myosin composite filament is a dual-stage molecular spring. Biophysical Journal, 64, 1161.

    PubMed  CAS  Google Scholar 

  60. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M., & Gaub, H. E. (1997). Reversible unfolding of individual titin immunoglobulin domains by AFM. Science, 276, 1109.

    Article  PubMed  CAS  Google Scholar 

  61. Hao, Y. D., Bernstein, S. I., & Pollack, G. H. (2004). Passive stiffness of drosophila IFM myofibrils: A novel, high accuracy measurement method. Journal of Muscle Research and Cell Motility, 25, 359.

    Article  PubMed  Google Scholar 

  62. Bell, E., & Gosline, J. (1996). Mechanical design of mussel byssus: Material yield enhances attachment strength. The Journal of Experimental Biology, 199, 1005.

    PubMed  Google Scholar 

  63. Waite, J. H., Qin, X. -X., & Coyne, K. J. (1998). The peculiar collagens of mussel byssus. Matrix Biology, 17, 93.

    Article  PubMed  CAS  Google Scholar 

  64. Waite, J. H., Vaccaro, E., Sun, C. J., & Lucas, J. M. (2002). Elastomeric gradients: A hedge against stress concentration in marine holdfasts? Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 357, 143.

    Article  CAS  Google Scholar 

  65. Erickson, H. P. (2002). Stretching fibronectin. Journal of Muscle Research and Cell Motility, 23, 575.

    Article  PubMed  Google Scholar 

  66. Ohashi, T., Kiehart, D. P., & Erickson, H. P. (2002). Dual labeling of the fibronectin matrix and actin cytoskeleton with green fluorescent protein variants. Journal of Cell Science, 115, 1221.

    PubMed  CAS  Google Scholar 

  67. Abu-Lail, N. I., Ohashi, T., Clark, R. L., Erickson, H. P., & Zauscher, S. (2006). Understanding the elasticity of fibronectin fibrils: Unfolding strengths of FN-III and GFP domains measured by single molecule force spectroscopy. Matrix Biology, 25, 175.

    Article  PubMed  CAS  Google Scholar 

  68. Baneyx, G., Baugh, L., & Vogel, V. (2002). Supramolecular chemistry and self-assembly special feature: Fibronectin extension and unfolding within cell matrix fibrils controlled by cytoskeletal tension. PNAS %R 10.1073/pnas.072650799 99, 5139.

  69. Pins, G. D., Christiansen, D. L., Patel, R., & Silver, F. H. (1997). Self-assembly of collagen fibers. Influence of fibrillar alignment and decorin on mechanical properties. Biophysical Journal, 73, 2164.

    PubMed  CAS  Google Scholar 

  70. Silver, F. H., Freeman, J. W., & Seehra, G. P. (2003). Collagen self-assembly and the development of tendon mechanical properties. Journal of Biomechanics, 36, 1529.

    Article  PubMed  Google Scholar 

  71. Silver, F. H., Christiansen, D., Snowhill, P. B., Chen, Y., & Landis, W. J. (2000). The role of mineral in the storage of elastic energy in turkey tendons. Biomacromolecules, 1, 180.

    Article  PubMed  CAS  Google Scholar 

  72. Shadwick, R. E. (1990). Elastic energy-storage in tendons—mechanical differences related to function and age. Journal of Applied Physiology, 68, 1033.

    Article  PubMed  CAS  Google Scholar 

  73. Sasaki, N., & Odajima, S. (1996). Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. Journal of Biomechanics, 29, 655.

    Article  PubMed  CAS  Google Scholar 

  74. Pollock, M., & Shadwick, R. E. (1994). Relationship between body-mass and biomechanical properties of limb tendons in adult mammals. American Journal of Physiology, 266, R1016.

    PubMed  CAS  Google Scholar 

  75. Kojima, H., Ishijima, A., & Yanagida, T. (1994). Direct measurement of stiffness of single actin-filaments with and without tropomyosin by in-vitro nanomanipulation. Proceedings of the National Academy of Sciences of the United States of America, 91, 12962.

    Article  PubMed  CAS  Google Scholar 

  76. Gittes, F., Mickey, B., Nettleton, J., & Howard, J. (1993). Flexural rigidity of microtubules and actin filaments measured from thermal fluctuations in shape. The Journal of Cell Biology, 120, 923.

    Article  PubMed  CAS  Google Scholar 

  77. Liu, X., & Pollack, G. H. (2002). Mechanics of F-actin characterized with microfabricated cantilevers. Biophysical Journal, 83, 2705.

    Article  PubMed  CAS  Google Scholar 

  78. Kishino, A., & Yanagida, T. (1988). Force measurements by micromanipulation of a single actin filament by glass needles. Nature, 334, 74.

    Article  PubMed  CAS  Google Scholar 

  79. Kakar, S. K., & Bettelheim, F. A. (1991). Birefringence of actin. Biopolymers, 31, 1283.

    Article  PubMed  CAS  Google Scholar 

  80. Kas, J., Strey, H., Tang, J. X., Finger, D., Ezzell, R., Sackmann, E., & Janmey, P. A. (1996). F-actin, a model polymer for semiflexible chains in dilute, semidilute, and liquid crystalline solutions. Biophysical Journal, 70, 609.

    Article  PubMed  CAS  Google Scholar 

  81. Liu, C. X., Guo, H. L., Xu, C. H., Yuan, M., Li, Z. L., Cheng, B. Y., & Zhang, D. Z. (2005). Measurement of breaking force of fluorescence labelled microtubules with optical tweezers. Chinese Physics Letters, 22, 1278.

    Article  Google Scholar 

  82. Felgner, H., Frank, R., & Schliwa, M. (1996). Flexural rigidity of microtubules measured with the use of optical tweezers. Journal of Cell Science, 109, 509.

    PubMed  CAS  Google Scholar 

  83. Kurachi, M., Hoshi, M., & Tashiro, H. (1995). Buckling of a single microtubule by optical trapping forces—direct measurement of microtubule rigidity. Cell Motility and the Cytoskeleton, 30, 221.

    Article  PubMed  CAS  Google Scholar 

  84. Kis, A., Kasas, S., Babic, B., Kulik, A. J., Benoit, W., Briggs, G. A. D., Schonenberger, C., Catsicas, S., & Forro, L. (2002). Nanomechanics of microtubules. Physical Review Letters, 89, S. 248101.

    Article  CAS  Google Scholar 

  85. Wainwright, S. A., Biggs, W. D., Currey, J. D., & Gosline, J. M. (1976). Mechanical design in organisms. Princeton: Princeton University Press.

  86. Hearle, J. W. S. (2000). A critical review of the structural mechanics of wool and hair fibres. International Journal of Biological Macromolecules, 27, 123.

    Article  PubMed  CAS  Google Scholar 

  87. Astbury, W. T., & Street, A. (1931). X-ray studies of the structure of hair, wool and related fibers. I. General Philosophical Transactions of the Royal Society of London, 230A, 75.

    Google Scholar 

  88. Astbury, W. T., & Woods, H. J. (1933). X ray studies of the structure of hair, wool, and related fibres. II. The molecular structure and elastic properties of hair keratin. Philosophical Transactions of the Royal Society of London. Series A: Mathematical and physical Sciences, 232, 333.

    Google Scholar 

  89. Bendit, E. G. (1960). A quantitative X-ray diffraction study of the alpha-beta transformation in wool keratin. Textile Research Journal, 30, 547.

    Article  CAS  Google Scholar 

  90. Fraser, R. D., MacRae, T. D., & Rogers, G. E. (1972). Keratins: Their composition, structure, and biosynthesis. Springfield: Charles C. Thomas.

  91. Cohen, C. (1998). Why fibrous proteins are romantic. Journal of Structural Biology, 122, 3.

    Article  PubMed  CAS  Google Scholar 

  92. Strelkov, S. V., Herrmann, H., & Aebi, U. (2003). Molecular architecture of intermediate filaments. Bioessays, 25, 243.

    Article  PubMed  CAS  Google Scholar 

  93. Landau L. D., & Lifschitz, E. M. (1980). Fluctuations in the curvature of long molecules. In Statistical physics part I. Oxford: Pergamon Press.

    Google Scholar 

  94. Guzman, C., Jeney, S., Kreplak, L., Kasas, S., Kulik, A. J., Aebi, U., & Forro, L. (2006). Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy. Journal of Molecular Biology, 360, 623.

    Article  PubMed  CAS  Google Scholar 

  95. Kielty C. M., Sherratt M. J., Marson A., & Baldock, C. (2005). Fibrillin microfibrils. In David A. Parry, & John M. Squire (Eds.) Fibrous proteins: Coiled-coils, collagen and elastomers, 70, 405.

  96. Tskhovrebova, L., & Trinick, J. (2003). Titin: Properties and family relationships. Nature Reviews Molecular Cell Biology, 4, 679.

    Article  PubMed  CAS  Google Scholar 

  97. Sivakumar, P., Czirok, A., Rongish, B. J., Divakara, V. P., Wang, Y. P., & Dallas, S. L. (2006). New insights into extracellular matrix assembly and reorganization from dynamic imaging of extracellular matrix proteins in living osteoblasts. Journal of Cell Science, 119, 1350.

    Article  PubMed  CAS  Google Scholar 

  98. Gao, M., Craig, D., Lequin, O., Campbell, I. D., Vogel, V., & Schulten, K. (2003). Structure and functional significance of mechanically unfolded fibronectin type III1 intermediates. Proceedings of the National Academy of Sciences of the United States of America, 100, 14784.

    Article  PubMed  CAS  Google Scholar 

  99. Bailey, K., Astbury W. T., & Rudall, K. W. (1943). Fibrinogen and fibrin as members of the keratin-myosin group. Nature, 151, 716.

    CAS  Google Scholar 

  100. Lorand, L. (1950). Letters to nature. Nature, 166, 694.

    Article  PubMed  CAS  Google Scholar 

  101. Howard, J. (2001). Mechanics of motor proteins and the cytoskeleton. Sunderland: Sinauer Associates.

    Google Scholar 

  102. Roska, F. J., & Ferry, J. D. (1982). Studies of fibrin film. 1. Stress-relaxation and birefringence. Biopolymers, 21, 1811.

    Article  PubMed  CAS  Google Scholar 

  103. Roska, F. J., Ferry, J. D., Lin, J. S., & Anderegg, J. W. (1982). Studies of fibrin film. 2. Small-angle X-ray-scattering. Biopolymers, 21, 1833.

    Article  PubMed  CAS  Google Scholar 

  104. Nelb, G. W., Kamykowski, G. W., & Ferry, J. D. (1981). Rheology of fibrin clots .5. Shear modulus, creep, and creep recovery of fine unligated clots. Biophysical Chemistry, 13, 15.

    Article  PubMed  CAS  Google Scholar 

  105. Gorkun, O. V., Henschen-Edman, A. H., Ping, L. F., & Lord, S. T. (1998). Analysis of A alpha 251 fibrinogen: The alpha C domain has a role in polymerization, albeit more subtle than anticipated from the analogous proteolytic fragment x. Biochemistry, 37, 15434.

    Article  PubMed  CAS  Google Scholar 

  106. Litvinov, R. I., Gorkun, O. V., Owen, S. F., Shuman, H., & Weisel, J. W. (2005). Polymerization of fibrin: Specificity, strength, and stability of knob-hole interactions studied at the single-molecule level. Blood, 106, 2944.

    Article  PubMed  CAS  Google Scholar 

  107. Yang, G., Cecconi, C., Baase, W. A., Vetter, I. R., Breyer, W. A., Haack, J. A., Matthews, B. W., Dahlquist, F. W., & Bustamante, C. (2000). Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme. Proceedings of the National Academy of Sciences of the United States of America, 97, 139.

    Article  PubMed  CAS  Google Scholar 

  108. Evans, E., & Ritchie, K. (1997). Dynamic strength of molecular adhesion bonds. Biophysical Journal, 72, 1541.

    PubMed  CAS  Google Scholar 

  109. Cohen, I., Gerrard, J. M., & White, J. G. (1982). Ultrastructure of clots during isometric contraction. Journal of Cell Biology, 93, 775.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank M. C. Stahle, J. L. Moen, and O. V. Gorkun for advice and technical assistance. We acknowledge support from NIH: P41 EB002025 (RS), R01 HL31048 (STL), R41 CA103120 (MG); NSF: CMMI-0646627 (MG); Research Corporation: RI0826 (MG); American Cancer Society: IRG-93-035-6 (MG) and the American Heart Association, Mid-Atlantic Affiliate Grant-in-Aid 055527U (RRH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guthold.

Additional information

The senior authors R. R. Hantgan and S. T. Lord have contributed equally to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guthold, M., Liu, W., Sparks, E.A. et al. A Comparison of the Mechanical and Structural Properties of Fibrin Fibers with Other Protein Fibers. Cell Biochem Biophys 49, 165–181 (2007). https://doi.org/10.1007/s12013-007-9001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-007-9001-4

Keywords

Navigation