Skip to main content
Log in

Perceptually salient haptic rendering for enhancing kinesthetic perception in virtual environments

  • Original Paper
  • Published:
Journal on Multimodal User Interfaces Aims and scope Submit manuscript

Abstract

Kinesthetic or dynamic touch involves the use of muscle sensitivity to perceive mechanical properties of objects that are gripped in the hand and wielded in space. Many previous studies with real objects have investigated the mechanical properties that underlie human haptic perception. Few virtual environments, however, have systematically incorporated the relevant mechanical parameters underlying kinesthetic perception. In this study, the ability of a haptic device to render kinesthetic information regarding the inertial properties of virtual objects was tested. Results suggest that users were able to perceive length of rendered virtual objects via the haptic device. Further, users can be trained using the haptic device to increase sensitivity to specific mechanical parameters (like inertia) that are perceptually salient in perceiving properties of rendered objects. The primary implication of this finding is that rendering kinesthetic parameters and employing feedback in a systematic manner may increase the realism of virtual environments and also improve haptic perception.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gibson JJ (1983) The senses considered as perceptual systems. Greenwood press, Westport (Conn.)

  2. Turvey MT (1996) Dynamic touch. Am Psychol 51(11):1134–1152

    Article  Google Scholar 

  3. Pagano CC, Carello C, Turvey MT (1996) Exteroception and exproprioception by dynamic touch are different functions of the inertia tensor. Percept Psychophys 58(8):1191–1202

    Article  Google Scholar 

  4. Lin MC, Otaduy M, Lin MC, Otaduy M (2008) Haptic rendering: foundations, algorithms and applications. A. K. Peters Ltd, Natick

    Google Scholar 

  5. der Putten EPW, Goossens RH, Jakimowicz JJ, Dankelman J (2008) Haptics in minimally invasive surgery—a review. Minim Invasive Ther Allied Technol 17(1):3–16

    Article  Google Scholar 

  6. Coles TR, Meglan D, John NW (2011) The role of haptics in medical training simulators: a survey of the state of the art. IEEE Trans Haptics 4(1):51–6

  7. Pagano CC, Cabe PA (2003) Constancy in dynamic touch: length perceived by dynamic touch is invariant over changes in media. Ecol Psychol 15(1):1–17

    Article  Google Scholar 

  8. van de Langenberg R, Kingma I, Beek PJ (2006) Mechanical invariants are implicated in dynamic touch as a function of their salience in the stimulus flow. J Exp Psychol Hum Percept Perform 32(5):1093–1106

    Article  Google Scholar 

  9. Solomon HY, Turvey MT (1988) Haptically perceiving the distances reachable with hand-held objects. J Exp Psychol Hum Percept Perform 14(3):404–427

    Article  Google Scholar 

  10. Fitzpatrick P, Carello C, Turvey MT (1994) Eigenvalues of the inertia tensor and exteroception by the muscular sense. Neuroscience 60(2):551–568

    Article  Google Scholar 

  11. Turvey MT (1998) Dynamics of effortful touch and interlimb coordination. J Biomech 31(10):873–882

    Article  Google Scholar 

  12. Turvey MT, Burton G, Amazeen EL, Butwill M, Carello C (1998) Perceiving the width and height of a hand-held object by dynamic touch. J Exp Psychol Hum Percept Perform 24(1):35–48

    Article  Google Scholar 

  13. Amazeen EL, Turvey MT (1996) Weight perception and the haptic size-weight illusion are functions of the inertia tensor. J Exp Psychol Hum Percept Perform 22(1):213–232

    Article  Google Scholar 

  14. Shockley K, Grocki M, Carello C, Turvey MT (2001) Somatosensory attunement to the rigid body laws. Exp Brain Res 136(1):133–137

    Article  Google Scholar 

  15. Pagano CC, Turvey MT (1993) Perceiving by dynamic touch the distances reachable with irregular objects. Ecol Psychol 5(2):125–151

    Article  Google Scholar 

  16. Pagano CC (2000) The role of the inertia tensor in kinesthesis. Crit Rev Biomed Eng 28(1–2):231–236

    Article  Google Scholar 

  17. Carello C, Turvey MT (2000) Rotational invariants and dynamic touch. In: Heller M (ed) Touch, representation, and blindness. Oxford University Press, Oxford, UK, pp 27–66

  18. Pagano CC, Fitzpatrick P, Turvey MT (1993) Tensorial basis to the constancy of perceived object extent over variations of dynamic touch. Percept Psychophys 54(1):43–54

    Article  Google Scholar 

  19. Kingma I, Beek PJ, van Dieën JH (2002) The inertia tensor versus static moment and mass in perceiving length and heaviness of hand-wielded rods. J Exp Psychol Hum Percept Perform 28(1):180–191

    Article  Google Scholar 

  20. Withagen R, Michaels CF (2005) The role of feedback information for calibration and attunement in perceiving length by dynamic touch. J Exp Psychol Hum Percept Perform 31(6):1379–1390

    Article  Google Scholar 

  21. Wagman JB, Shockley K, Riley MA, Turvey MT (2001) Attunement, calibration, and exploration in fast haptic perceptual learning. J Mot Behav 33(4):323–327

    Article  Google Scholar 

  22. Gibson EJ (1963) Perceptual learning. Annu Rev Psychol 14(1):29–56

    Article  Google Scholar 

  23. Gibson JJ, Gibson EJ (1955) Perceptual learning; differentiation or enrichment? Psychol Rev 62(1):32–41

    Article  Google Scholar 

  24. Bingham GP, Pagano CC (1998) The necessity of a perception-action approach to definite distance perception: monocular distance perception to guide reaching. J Exp Psychol Hum Percept Perform 24:145–168

    Article  Google Scholar 

  25. Withagen R, Michaels CF (2007) Transfer of calibration between length and sweet-spot perception by dynamic touch. Ecol Psychol 19(1):1–19

    Article  Google Scholar 

  26. Bootsma RJ, Fayt V, Zaal FTJM, Laurent M (1997) On the information-based regulation of movement: what Wann (1996) may want to consider. J Exp Psychol Hum Percept Perform 23(4):1282–1289

    Article  Google Scholar 

  27. Hayward V, Maclean K (2007) Do it yourself haptics: part I. IEEE Robot Autom Mag 14(4):88–104

    Article  Google Scholar 

  28. Frisoli A, Rocchi F, Marcheschi S, Dettori A, Salsedo F, Bergamasco M (2005) A new force-feedback arm exoskeleton for haptic interaction in virtual environments. In: Eurohaptics conference, 2005 and symposium on haptic interfaces for virtual environment and teleoperator systems, 2005. World Haptics 2005. First Joint 2005, pp 195–201

  29. Salisbury JK, Srinivasan MA (1997) Phantom-based haptic interaction with virtual objects. IEEE Comput Graph Appl 17(5):6–10

    Article  Google Scholar 

  30. Gosselin C, Lecours A, Laliberté T, Fortin M (2014) Design and experimental validation of planar programmable inertia generators. Int J Robot Res, 33(4):489–506

  31. Amemiya T, Ando H, Maeda T (2008) Lead-me interface for a pulling sensation from hand-held devices. ACM Trans Appl Percept 5(3):15-1–15-17

  32. Kitagawa M, Okamura AM, Bethea BT, Gott VL, Baumgartner WA (2002) Analysis of suture manipulation forces for teleoperation with force feedback. In: Proceedings of the 5th international conference on medical image computing and computer-assisted intervention-part I, pp 155–162

  33. Bark K, McMahan W, Remington A, Gewirtz J, Wedmid A, Lee DI, Kuchenbecker KJ 2013 In vivo validation of a system for haptic feedback of tool vibrations in robotic surgery. Surg Endosc 27(2):656–664

  34. Brown JD, Rosen J, Chang L, Sinanan MN, Hannaford B (2004) Quantifying surgeon grasping mechanics in laparoscopy using the Blue DRAGON system. Stud Health Technol Inform 98:34–36

    Google Scholar 

  35. Okamura AM, Richard C, Cutkosky MR (2002) Feeling is believing: using a force-feedback joystick to teach dynamic systems. J Eng Educ 91(3):345–349

  36. Stocco LJ, Salcudean SE, Sassani F (Sep. 2001) Optimal kinematic design of a haptic pen. IEEE/ASME Trans Mechatron 6(3):210–220

  37. Lathan CE, Tracey MR, Sebrechts MM, Clawson DM, Higgins GA (2002) Using virtual environments as training simulators: measuring transfer. In: Handbook of virtual environments: design, implementation, and applications . CRC Press, pp 403–414

  38. Long LO, Singapogu RB, Arcese G, Smith DE, Burg TC, Pagano CC, Burg KJL (2013) A haptic simulator to increase laparoscopic force application sensitivity. Stud Health Technol Inform 184:273–275

    Google Scholar 

  39. Singapogu RB, Smith DE, Long LO, Burg TC, Pagano CC, Burg KJL (2012) Objective differentiation of force-based laparoscopic skills using a novel haptic simulator. J Surg Educ 69(6):766–773

  40. Singapogu RB, DuBose S, Long LO, Smith DE, Burg TC, Pagano CC, Burg KJL (2013) Salient haptic skills trainer: initial validation of a novel simulator for training force-based laparoscopic surgical skills. Surg Endosc 27(5):1653–1661

  41. Edmunds T, Pai DK (2012) Perceptually augmented simulator design. IEEE Trans Haptics 5(1):66–76

    Article  Google Scholar 

  42. Edmunds T, Pai DK (2008) Perceptual rendering for learning haptic skills. In: International symposium on haptic interfaces for virtual environment and teleoperator systems, Los Alamitos, CA, USA, pp 225–230

  43. Vicentini M, Botturi D (2009) Perceptual factors for interaction modeling using haptic device. In: IEEE international conference on robotics and automation, 2009. ICRA ’09, pp 1073–1078

  44. Scandola M, Vicentini M, Gasperotti L, Zerbato D, Florini P (2011) Force feedback in psychophysics research: even low performance algorithms may lead to realistic perceptual experience. Proc Fechner Day 27(1):267–272

    Google Scholar 

  45. Pagano CC, Kinsella-Shaw JM, Cassidy PE, Turvey MT (1994) Role of the inertia tensor in haptically perceiving where an object is grasped. J Exp Psychol Hum Percept Perform 20(2):276–285

    Article  Google Scholar 

  46. Singapogu RB, Pagano CC, Burg TC, Burg KJKL (2011) Perceptual metrics: towards better methods for assessing realism in laparoscopic simulators. Stud Health Technol Inform 163:588–590

    Google Scholar 

  47. Chmarra MK, Dankelman J, van den Dobbelsteen JJ, Jansen F-W (2008) Force feedback and basic laparoscopic skills. Surg Endosc 22(10):2140–2148

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravikiran B. Singapogu.

Appendices

Appendix A: derivation of rod dynamics

The dynamical equations for the motion of a handheld rod were derived by defining two frames of reference; a static inertial (\(i\)) frame and a body (\(b\)) frame which moves with the moving rod. The rotation from \(i\)- to the \(b\)-frame is defined by the rotation angles \(\theta \) and \(\varphi \), with the sequence of rotation being rotation about the \(y_i\)-axis using the \(\theta \) angle first, followed by rotation about the \(x_b\)-axis using the \(\varphi \) angle. The rotation matrix, \(C_i^b ,\) from the inertial to the body frame is

$$\begin{aligned} C_i^b =\left[ {{\begin{array}{l@{\quad }l@{\quad }l} 1&{} 0&{} 0\\ 0&{} {c_\varphi }&{} {s_\varphi }\\ 0&{} {-s_\varphi }&{} {c_\varphi }\\ \end{array}}} \right] \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {c_\theta }&{} 0&{} {-s_\theta }\\ 0&{} 1&{} 0\\ {s_\theta }&{} 0&{} {c_\theta }\\ \end{array} }} \right] =\left[ {{\begin{array}{l@{\quad }l@{\quad }l} {c_\theta }&{} 0&{} {-s_\theta }\\ {s_\varphi s_\theta }&{} {c_\varphi }&{} {s_\varphi c_\theta }\\ {c_\varphi s_\theta }&{} {-s_\varphi }&{} {c_\varphi c_\theta }\\ \end{array} }} \right] , \end{aligned}$$

where \(c( \theta )=\cos ( \theta )\) and \(s( \theta )=\sin ( \theta ).\) Using Newton–Euler equations for dynamic equation formation, the total torque applied on the virtual rod is the sum of the gravitational torque and torque applied by the user; \(M_{\textit{total}} =M_{\textit{gravity}} + M_{\textit{applied}}\).

On the left hand side of the moments equation, the total torque consists of two sub moments; torque due to angular acceleration and torque due to translation of the bottom of the rod. The angular momentum, \(H^b,\) in the body frame is defined as \(H^b=\varvec{I}w_{ib}^b \), where I is the diagonalized inertia tensor,

$$\begin{aligned} \varvec{I}=\left[ {{\begin{array}{l@{\quad }l@{\quad }l} {I_{xx} }&{} 0&{} 0\\ 0&{} {I_{yy} }&{} 0\\ 0&{} 0&{} {I_{zz} }\\ \end{array} }} \right] , \end{aligned}$$

with \(I_{xx} =I_{yy} \) because the rods are cylindrical. \(w_{ib}^b \) is the angular velocity of the body with respect to the inertial frame, expressed in the body frame;

$$\begin{aligned} w_{ib}^b =\left[ {{\begin{array}{c} p\\ q\\ r\\ \end{array} }} \right] . \end{aligned}$$

Since the rod rotates only about the \(x_b\)-and \(y_b\)-axis, the \(z_b\)-component of \(w_{ib}^b \) is zero \((r=0)\). The moment due to angular acceleration \(M^i_{acc}\) in the inertial frame is obtained by differentiating the angular momentum

$$\begin{aligned} M_{acc}^i&= \frac{d}{dt}H^i=\frac{d}{dt}( {C_b^i H^b})=\left( {\frac{d}{dt}C_b^i }\right) H^b\\&\quad +C_b^i \left( {\frac{d}{dt}H^b}\right) =C_b^i \Omega _{ib}^b H^b+C_b^i \left( {\frac{d}{dt}H^b}\right) , \end{aligned}$$

where \(\Omega _{ib}^b \) is the skew symmetric matrix of the vector \( w_{ib}^b \). Transforming the total moment with respect to the body frame yields

$$\begin{aligned} M_{acc}^b&= C_i^b M_{acc}^i = \frac{d}{dt}H^b+\Omega _{ib}^b H^b\\ M_{{acc}}^{b}&= \left[ {\begin{array}{c} {I_{{xx}} \dot{p}} \\ {I_{{yy}} \dot{q}} \\ {I_{{zz}} \dot{r}} \\ \end{array} } \right] + \left[ {\begin{array}{c} { - rqI_{{yy}} + qrI_{{zz}} } \\ {prI_{{xx}} - prI_{{zz}} } \\ { - pqI_{{xx}} + pqI_{{yy}} } \\ \end{array} } \right] \\&= \left[ {\begin{array}{c} {I_{{xx}} \dot{p} - qr(I_{{yy}} - I_{{zz}} )} \\ {I_{{yy}} \dot{q} - pr(I_{{zz}} - I_{{xx}} )} \\ {I_{{zz}} \dot{r} - pq(I_{{xx}} - I_{{yy}} )} \\ \end{array} } \right] . \end{aligned}$$

Since \(r=0, \dot{r} = 0 \) and \(I_{xx} =I_{yy} \), moment due to angular acceleration with respect to the body frame is given by

$$\begin{aligned} M_{{acc}}^{b} = \left[ {\begin{array}{c} {I_{{xx}} \dot{p}} \\ {I_{{yy}} \dot{q}} \\ 0 \\ \end{array} } \right] . \end{aligned}$$

Moment due to translation of the bottom of the rod causes the moments \(M_{tr}^b \)

$$\begin{aligned}&M_{tr}^b =-r_{AG}^b \times F_A^b =r_{GA}^b \times F_A^b\\&F_A^b =m\left( {C_i^b \left[ {{\begin{array}{c} {\ddot{x}^i}\\ {\ddot{y}^i}\\ {\ddot{z}^i}\\ \end{array} }} \right] +\dot{\omega }_{ib}^b \times r_{AG}^b +\omega _{ib}^b \times ( {\omega _{ib}^b \times r_{AG}^b })}\right) \\&M_{tr}^b =m\left[ {{\begin{array}{l@{\quad }l@{\quad }l} 0&{} {-\frac{l}{2}}&{} 0\\ {\frac{l}{2}}&{} 0&{} 0\\ 0&{} 0&{} 0\\ \end{array} }} \right] \left( \left[ {{\begin{array}{l@{\quad }l@{\quad }l} {c_\theta }&{} 0&{} {-s_\theta }\\ {s_\varphi s_\theta }&{} {c_\varphi }&{} {s_\varphi c_\theta }\\ {c_\varphi s_\theta }&{} {-s_\varphi }&{} {c_\varphi c_\theta }\\ \end{array} }} \right] \left[ {{\begin{array}{c} {\ddot{x}^i}\\ {\ddot{y}^i}\\ {\ddot{z}^i}\\ \end{array} }} \right] \right. \nonumber \\&\qquad \left. +\left[ {{\begin{array}{l@{\quad }l@{\quad }l} 0&{} {-\dot{r}}&{} {\dot{q}}\\ {\dot{r}}&{} 0&{} {-\dot{p}}\\ {-\dot{q}}&{} {\dot{p}}&{} 0\\ \end{array} }} \right] \left[ {{\begin{array}{c} 0\\ 0\\ {-\frac{l}{2}}\\ \end{array} }} \right] \right. \nonumber \\&\qquad \left. +\left[ {{\begin{array}{l@{\quad }l@{\quad }l} 0&{} {-r}&{} q\\ r&{} 0&{} {-p}\\ {-q}&{} p&{} 0\\ \end{array} }} \right] ^2\left[ {{\begin{array}{c} 0\\ 0\\ {-\frac{l}{2}}\\ \end{array} }} \right] \right) \\&\quad =\frac{ml}{2}\left[ {{\begin{array}{c} {-s_\varphi s_\theta \ddot{x}^i-c_\varphi \ddot{y}^i-s_\varphi c_\theta \ddot{z}^i}\\ {c_\theta \ddot{x}^i-s_\theta \ddot{z}^i}\\ 0\\ \end{array} }} \right] +\frac{ml^2}{4}\left[ {{\begin{array}{c} {-\dot{p}}\\ {-\dot{q}}\\ 0\\ \end{array} }} \right] . \end{aligned}$$

The next moment to be considered is torque due to gravity. Assuming that the gravity is transmitted to the lower end of the rod along the \(z_b\)-axis in the body frame, the \(z_b\)-component of the gravity term causes a force \(F_g^b \) given by

$$\begin{aligned} F_g^b =C_i^b \left[ {{\begin{array}{c} 0\\ 0\\ {mg}\\ \end{array} }} \right] =\left[ {{\begin{array}{c} {-s_\theta }\\ {s_\varphi c_\theta }\\ {c_\varphi c_\theta }\\ \end{array} }} \right] mg, \end{aligned}$$

where \(m\) is mass of the rod. The gravity term causes the moment, \(M_g^b\), defined by \(M_g^b =-r_{GA}^b \times F_g^b \). Using \(r_{GA}^b =[0\,\, 0\frac{l}{2}]^T\) (where \(l\) is the length of the rod) and \(F_g^b \),

$$\begin{aligned} M_g^b =-\left[ {{\begin{array}{l@{\quad }l@{\quad }l} 0&{} {-\frac{l}{2}}&{} 0\\ {\frac{l}{2}}&{} 0&{} 0\\ 0&{} 0&{} 0\\ \end{array} }} \right] \left[ {{\begin{array}{c} {-s_\theta }\\ {s_\varphi c_\theta }\\ {c_\varphi c_\theta }\\ \end{array} }} \right] mg=\left[ {{\begin{array}{c} {s_\varphi c_\theta }\\ {s_\theta }\\ 0\\ \end{array} }} \right] \frac{lmg}{2}. \end{aligned}$$

The external applied moment of the hand is defined as \(M_T^b \). Using Newton–Euler balance equations, \(M_{acc} = M_{gravity} + M_{tr} + M_{applied}\), the equilibrium of the body about the \(x_b\)- and \(y_b\)-axis results in the following equations

$$\begin{aligned}&\left( {I_{{xx}} + m\frac{{l^{2} }}{4}} \right) \dot{p} = s_{\varphi } c_{\theta } \frac{{lmg}}{2} \\&\quad + ( { - s_{\varphi } s_{\theta } \ddot{x}^{i} - c_{\varphi } \ddot{y}^{i} - s_{\varphi } c_{\theta } \ddot{z}^{i} })\frac{{ml}}{2} + M_{{T_{x} }}^{b} \end{aligned}$$
$$\begin{aligned}&\left( {I_{{yy}} + m\frac{{l^{2} }}{4}} \right) \dot{q} = s_{\theta } \frac{{lmg}}{2} \\&\quad +\, (c_{\theta } \ddot{x}^{i} - s_{\theta } \ddot{z}^{i} )\frac{{ml}}{2} + M_{{T_{y} }}^{b}. \end{aligned}$$

Since the angular rates of the rod can be expressed as the time derivatives of Euler angles using

$$\begin{aligned} \left[ {\begin{array}{c} p \\ q \\ r \\ \end{array} } \right] = \left[ {\begin{array}{l@{\quad }l@{\quad }l} 1 &{} 0 &{} { - s_{\theta } } \\ 0 &{} {c_{\varphi } } &{} {s_{\varphi } c_{\theta } } \\ 0 &{} { - s_{\varphi } } &{} {c_{\varphi } c_{\theta } } \\ \end{array} } \right] \left[ {\begin{array}{c} {\dot{\varphi }} \\ {\dot{\theta }} \\ {\dot{\Psi }} \\ \end{array} } \right] , \end{aligned}$$

torque balance equations about the \(x\) and \(y\) axis are

$$\begin{aligned}&\left( l_{xx}+\frac{{ml^2}}{4}\right) \left( \ddot{\varphi }-\frac{{s_\varphi }}{c^2_\theta c_\varphi }{\theta ^{^{\!\!\!\cdot }}}^{2}\right) \approx s_{\varphi } c_{\theta } \frac{{lmg}}{2}\\&\quad + ( { - s_{\varphi } s_{\theta } \ddot{x}^{i} - c_{\varphi } \ddot{y}^{i} - s_{\varphi } c_{\theta } \ddot{z}^{i} })\frac{{ml}}{2} + M_{{T_{x} }}^{b}\\&\left( l_{yy}+\frac{{ml^2}}{4}\right) \left( \frac{1}{c_\varphi }{\ddot{\theta }}+\frac{s_\varphi }{c^{2}_\varphi }\dot{\varphi }\dot{\theta }\right) \approx s_{\theta } \frac{{lmg}}{2}\\&+ (c_{\theta } \ddot{x}^{i} - s_{\theta } \ddot{z}^{i} )\frac{{ml}}{2} + M_{{T_{y} }}^{b}. \end{aligned}$$

The vector \([-M_{T_x }^b -M_{T_y }^b 0]\) defines the output response torque and is applied to the 5 DOF haptic device.

Appendix B: table of terms related to the dynamic-touch approach to haptic perception

Dynamic touch

This term refers to perceiving properties of rigid objects by holding or wielding them

Kinesthetic

Typically, this form of haptic perception refers to motion-based touch interaction, in contrast with tactile (skin-based) feedback

Parameter

In this work, a parameter may mean a lower order (e.g., mass) or higher order (e.g., inertia/first moment) mechanical quantity

Inertia

Inertia is defined as the resistance of the object to angular acceleration. The inertia tensor, I, describes the spatial distribution of the object’s mass and its resistance to rotational accelerations in three dimensions. For a rigid object rotating about a fixed point of rotation, I is a constant and as a time-independent quantity, I is an “invariant” mechanical quantity describing the mass distribution of the rotated object. The eigenvalues of I (or principal moments of inertia, \(I_{1}, I_{2}\), and \(I_{3}\), where \(I_{1} \ge I_{2} \ge I_{3})\) describe the resistances to rotations about the respective directions of the eigenvectors (or principal axes of inertia, e\(_{1}\), e\(_{2}\), and e\(_{3}\), where e\(_{1}\) is the axis of maximum resistance and e\(_{3}\) is the axis of minimal resistance) [8]

Invariant

The mechanical quantity of an object that is not time varying or stimulus-dependent

Specifying variables

Those mechanical variables that are directly related to a particular object property

Attunement

The process of “honing in” on the specifying variable for a particular object property

Calibration

The process of scaling the specifying variable accurately based on visual or haptic feedback

Perceptual learning

In this work, we hypothesize that the dual processes of attunement and calibration are used in improving perception through feedback

Fidelity of rendering

The degree or quality of realism that the device or environment is capable of rendering

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singapogu, R.B., Pagano, C.C., Burg, T.C. et al. Perceptually salient haptic rendering for enhancing kinesthetic perception in virtual environments. J Multimodal User Interfaces 8, 319–331 (2014). https://doi.org/10.1007/s12193-014-0164-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12193-014-0164-1

Keywords

Navigation