Skip to main content
Log in

Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli

  • Original Paper
  • Published:
Cell Stress and Chaperones Aims and scope

Abstract

The extracellular α-amylase from the hyperthermophilic archaeum Pyrococcus furiosus (PFA) is extremely thermostable and of an industrial importance and interest. PFA aggregates and accumulates as insoluble inclusion bodies when expressed as a heterologous protein at a high level in Escherichia coli. In the present study, we investigated the roles of chaperones from P. furiosus in the soluble expression of recombinant PFA in E. coli. The results indicate that co-expression of PFA with the molecular chaperone prefoldin alone significantly increased the soluble expression of PFA. Although, co-expression of other main chaperone components from P. furiosus, such as the small heat shock protein (sHSP) or chaperonin (HSP60), was also able to improve the soluble expression of PFA to a certain extent. Co-expression of chaperonin or sHSP in addition to prefoldin did not further increase the soluble expression of PFA. This finding emphasizes the biotechnological potentials of the molecular chaperone prefoldin from P. furiosus, which may facilitate the production of recombinant PFA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atomi H, Sato T, Kanai T (2011) Application of hyperthermophiles and their enzymes. Curr Opin Biotechnol 22(5):618–626

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zvi AP, Goloubinoff P (2001) Review: mechanisms of disaggregation and refolding of stable protein aggregates by molecular chaperones. J Struct Biol 135(2):84–93

    Article  CAS  PubMed  Google Scholar 

  • Bernfeld P (1955) Amylases, α and β. Methods Enzymol 1:149–158

    Article  CAS  Google Scholar 

  • Carvalho H, Meneghini R (2008) Increased expression and purification of soluble iron-regulatory protein 1 from Escherichia coli co-expressing chaperonins GroES and GroEL. Braz J Med Bio Res 41(4):270–276

    Article  CAS  Google Scholar 

  • Chen HY, Chu ZM, Zhang Y, Yang SL (2006) Over-expression and characterization of the recombinant small heat shock protein from Pyrococcus furiosus. Biotechnol Lett 28(14):1089–1094

    Article  CAS  PubMed  Google Scholar 

  • Chen HY, Chu ZM, Ma YH, Zhang Y, Yang SL (2007) Expression and characterization of the chaperonin molecular machine from the hyperthermophilic archaeon Pyrococcus furiosus. J Basic Microbiol 47(2):132–137

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Yang LD, Zhang Y, Yang SL (2010) Over-expression and characterization of recombinant prefoldin from hyperthermophilic archaeum Pyrococcus furiosus in E. coli. Biotechnol Lett 32:429–434

    Article  CAS  PubMed  Google Scholar 

  • de Marco A (2007) Protocol for preparing proteins with improved solubility by co-expressing with molecular chaperones in Escherichia coli. Nat Protoc 2(10):2632–2639

    Article  CAS  PubMed  Google Scholar 

  • de Marco A, Vigh L, Diamant S, Goloubinoff P (2005) Native folding of aggregation-prone recombinant proteins in Escherichia coli by osmolytes, plasmid- or benzyl alcohol-overexpressed molecular chaperones. Cell Stress Chaperones 10(4):329–339

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong G, Vieille C, Savchenko A, Zeikus JG (1997) Cloning, sequencing, and expression of the gene encoding extracellular alpha-amylase from Pyrococcus furiosus and biochemical characterization of the recombinant enzyme. Appl Environ Microbiol 63(9):3569–3576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ellis J (1987) Proteins as molecular chaperones. Nature 328(6129):378–379

    Article  CAS  PubMed  Google Scholar 

  • Emmanuel L, Stefan J, Bernard H, Abdel B (2000) Thermophilic archaeal amylolytic enzymes. Enzyme Microb Technol 26:3–14

    Article  Google Scholar 

  • Grzybowska B, Szweda P, Synowiecki J (2004) Cloning of the thermostable α-amylase gene from Pyrococcus woesei in Escherichia coli. Mol Biotechnol 26:101–109

    Article  CAS  PubMed  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Hayer-Hartl M (2002) Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858

    Article  CAS  PubMed  Google Scholar 

  • Hartl FU, Bracher A, Hayer-Hartl M (2011) Molecular chaperones in protein folding and proteostasis. Nature 475(7356):324–332

    Article  CAS  PubMed  Google Scholar 

  • Hongo K, Itai H, Mizobata T, Kawata Y (2012) Varied effects of Pyrococcus furiosus prefolding and P. furiosus chaperonin on the refolding reactions of substrate proteins. J Biochem 151(4):383–390

    Article  CAS  PubMed  Google Scholar 

  • Iizuka R, Sugano Y, Ide N, Ohtaki A, Yoshida T, Fujiwara S, Imanaka T, Yohda M (2008) Functional characterization of recombinant prefoldin complexes from a hyperthermophilic archaeon, Thermococcus sp. strain KS-1. J Mol Biol 377:972–983

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen S, Vorgias CE, Antranikian G (1997) Cloning, sequencing, characterization, and expression of an extracellular a-amylase from the hyperthermophilic archaeon Pyrococcus furiosus in Escherichia coli and Bacillus subtilis. J Biol Chem 268:16335–16342

    Article  Google Scholar 

  • Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394(6693):595–599

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  CAS  PubMed  Google Scholar 

  • Lakanalamai P, Whitehead TA, Rbobb FT (2004) Minimal protein-folding systems in hyperthermophilic archaea. Nat Rev Microbiol 2(4):315–324

    Article  CAS  Google Scholar 

  • Laksanalamai P, Maeder DL, Robb FT (2001) Regulation and mechanism of action of the small heat shock protein from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol 183(17):5198–5202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laksanalamai P, Pavlov AR, Slesarev AI, Robb FT (2006) Stabilization of Taq DNA polymerase at high temperature by protein folding pathways from a hyperthermophilic archaeon, Pyrococcus furiosus. Biotechnol Bioeng 93:1–5

    Article  CAS  PubMed  Google Scholar 

  • Leroux MR, Fandrich M, Klunker D, Siegers K, Lupas AN, Brown JR, Schiebel E, Dobson CM, Hartl FU (1999) MtGimC, a novel archaeal chaperone related to the eukaryotic chaperonin cofactor GimC/prefoldin. EMBO J 18:6730–6743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund P (2011) Insights into chaperonin function from studies on archaeal thermosomes. Biochem Soc Trans 39(1):94–98

    Article  CAS  PubMed  Google Scholar 

  • Lundin VF, Stirling PC, Gomez-Rein J, Mwenifumbo JC, Obst JM, Valpuesta JM, Leroux MR (2004) Molecular clamp mechanism of substrate binding by hydrophobic coiled-coil residues of the archaeal chaperone prefoldin. Proc Natl Acad Sci U S A 101:4367–4372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Alonso M et al (2009) Rehosting of bacterial chaperones for high-quality protein production. Appl Environ Microbiol 75(24):7850–7854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihara K, Kanemori M, Yanagi H, Yura T (2000) Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl Environ Microbiol 66:884–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okochi M, Yoshida T, Maruyama T, Kawarabayasi Y, Kikuchi H, Yohda M (2002) Pyrococcus prefoldin stabilizes protein-folding intermediates and transfers them to chaperonins for correct folding. Biochem Biophys Res Commun 291:769–774

    Article  CAS  PubMed  Google Scholar 

  • Okochi M, Kanie K, Kurimoto M, Yohda M, Honda H (2008) Overexpression of prefoldin from hyperthermophilic archaeum Pyrococcus horokoshii OT3 endowed Escherichia coli with organic solvent tolerance. Appl Microbiol Biotechnol 79:443–449

    Article  CAS  PubMed  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  CAS  PubMed  Google Scholar 

  • Siegers K, Waldmann T, Leroux MR, Grein K, Shevchenko A, Schiebel E, Hartl FU (1999) Compartmentation of protein folding in vivo: sequestration of non-native polypeptide by the chaperonin-GimC system. EMBO J 18:75–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuriki N, Tawfik DS (2009) Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459:668–671

    Article  CAS  PubMed  Google Scholar 

  • Wang LS, Zhou Q, Chen H, Chu Z, Lu J, Zhang Y et al (2007) Efficient solubilization, purification of recombinant extracellular alpha-amylase from Pyrococcus furiosus expressed as inclusion bodies in Escherichia coli. J Ind Microbiol Biotechnol 4(3):187–192

    Article  CAS  Google Scholar 

  • Yan X, Hu S, Guan YX, Yao SJ (2012) Coexpression of chaperonin GroEL/GroES markedly enhanced soluble and functional expression of recombinant human interferon-gamma in Escherichia coli. Appl Microbiol Biotechnol 93(3):1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Baker ML, Schroder GF, Douglas NR et al (2010) Mechanism of folding chamber closure in a group II chaperonin. Nature 463(7279):379–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by National Basic Research Program of China (973 Program) No. 2012CB721103.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yonghong Wang or Yi Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, S., Chu, Z., Lu, J. et al. Co-expression of chaperones from P. furiosus enhanced the soluble expression of the recombinant hyperthermophilic α-amylase in E. coli . Cell Stress and Chaperones 21, 477–484 (2016). https://doi.org/10.1007/s12192-016-0675-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12192-016-0675-7

Keywords

Navigation