Skip to main content
Log in

Abstract

In Kadison J Pure Appl Alg 218:367–380, (2014) it was shown that subgroup depth may be computed from the permutation module of the left or right cosets: this holds more generally for a Hopf subalgebra, from which we note in this paper that finite depth of a Hopf subalgebra \(R \subseteq H\) is equivalent to the \(H\)-module coalgebra \(Q = H/R^+H\) representing an algebraic element in the Green ring of \(H\) or \(R\). This approach shows that subgroup depth and the subgroup depth of the corefree quotient lie in the same closed interval of length one. We also establish a previous claim that the problem of determining if \(R\) has finite depth in \(H\) is equivalent to determining if \(H\) has finite depth in its smash product \(Q^* \# H\). A necessary condition is obtained for finite depth from stabilization of a descending chain of annihilator ideals of tensor powers of \(Q\). As an application of these topics to a centerless finite group \(G\), we prove that the minimum depth of its group \(\mathbb {C}\,\)-algebra in the Drinfeld double \(D(G)\) is an odd integer, which determines the least tensor power of the adjoint representation \(Q\) that is a faithful \(\mathbb {C}\,G\)-module.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alperin, J.L., Bell, R.B.: Groups and Representations, GTM 162. Springer, New York (1995)

    Book  Google Scholar 

  2. Auslander, M., Reiten, I., Smalö, S.: Representation theory of Artin algebras. Cambridge Studies in Adv. Math. vol. 36, (1995)

  3. Berger, T.R.: Irreducible modules of solvable groups are algebraic. In: Proceedings of the conference on finite groups (Univ. Utah, 1975), pp. 541–553. Academic Press, New York (1976)

  4. Boltje, R., Danz, S., Külshammer, B.: On the depth of subgroups and group algebra extensions. J. Algebra 335, 258–281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boltje, R., Külshammer, B.: On the depth 2 condition for group algebra and Hopf algebra extensions. J. Algebra 323, 1783–1796 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boltje, R., Külshammer, B.: Group algebra extensions of depth one. Algebra Number Theory 5, 63–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brzezinski, T., Wisbauer, R.: Corings and Comodules, Lecture Note Series 309. Cambridge University Press, L.M.S. (2003)

    Google Scholar 

  8. Burciu, S.: On some representations of the Drinfel’d double. J. Algebra 296, 480–504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burciu, S.: Mathematical email exchanges with second author, (2011)

  10. Burciu, S., Kadison, L.: Subgroups of depth three. Surv. Diff. Geom. XV, 17–36 (2011)

    MathSciNet  Google Scholar 

  11. Burciu, S., Kadison, L., Külshammer, B.: On subgroup depth (with an appendix by Külshammer and Danz) I.E.J.A. vol. 9, pp. 133–166. (2011)

  12. Caenepeel, S., Militaru, G., Zhu, S.: Frobenius and separable functors for generalized module categories and nonlinear equations. Lect. Notes Math. p. 1787. Springer (2002)

  13. Chen, H.-X., Hiss, G.: Projective summands in tensor products of simple modules of finite dimensional Hopf algebras. Comm. Alg. 32, 4247–4264 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Craven, D.: Simple modules for groups with abelian Sylow 2-subgroups are algebraic. J. Algebra 321, 1473–1479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Curtis, C.W., Reiner, I.: Methods of Representation Theory, Vol. 1, Wiley Interscience (1981)

  16. Danz, S.: The depth of some twisted group extensions. Comm. Alg. 39, 1–15 (2011)

    Google Scholar 

  17. Etingof, P., Ostrik, V.: Finite tensor categories. Mosc. J. Math. 4(627–654), 782–783 (2004)

    MathSciNet  Google Scholar 

  18. Feit, W.: The representation theory of finite groups, North-Holland, (1982)

  19. Feldvöss, J., Klingler, L.: Tensor powers and projective modules for Hopf algebras. In: Algebras and modules, II (Geiranger, 1996) Can. Math. Soc. Proc. vol. 24, pp. 195–203. A.M.S., Providence (1998)

  20. Fritzsche, T.: The depth of subgroups of \({\rm PSL(2, q)}\), J. Algebra 349 (2011), 217–233. Ibid II. J. Algebra 381:37–53 (2013)

  21. Fritzsche, T., Külshammer, B., Reiche, C.: The depth of young subgroups of symmetric groups. J. Algebra 381, 96–109 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Héthelyi, L., Horváth, E., Petényi, F.: The depth of subgroups of Suzuki groups. arXiv:1404.1523

  23. Isaacs, I.M.: Character theory of finite groups, Dover (1976)

  24. Kadison, L.: New examples of Frobenius extensions, University Lecture Series 14. Amer. Math. Soc, Providence (1999)

    Google Scholar 

  25. Kadison, L., Külshammer, B.: Depth two, normality and a trace ideal condition for Frobenius extensions. Comm. Alg. 34, 3103–3122 (2006)

    Article  MATH  Google Scholar 

  26. Kadison, L.: Odd H-depth and H-separable extensions. Cen. Eur. J. Math. 10, 958–968 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kadison, L., Subring depth, Frobenius extensions and towers. Int. J. Math. Math. Sci. article 254791 (2012)

  28. Kadison, L.: Hopf subalgebras and tensor powers of generalized permutation modules. J. Pure Appl. Alg. 218, 367–380 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kadison, L., Young, C.J.: Subalgebra depths within path algebras of acyclic quivers. In: Conference Series Springer., (A.G.M.P. Conf., Mulhouse, Oct. 2011), (eds.) A. Makhlouf, S. Silvestrov, A. Stolin and E. Paal, p. 14 to appear.

  30. Lorenz, M.: Representations of finite-dimensional Hopf algebras. J. Algebra 188, 476–505 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Majid, S.: Foundations of Quantum Group Theory, Cambridge University Press (1995)

  32. Montgomery, S.: Hopf Algebras and their Actions on Rings, C.B.M.S. 82, A.M.S. (1993)

  33. Passman, D.S.: The adjoint representation of group algebras and enveloping algebras. Publ. Mat. 36, 861–871 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Passman, D.S., Quinn, D.: Burnside’s theorem for Hopf algebras. Proc. AMS 123, 327–333 (1995)

    MathSciNet  MATH  Google Scholar 

  35. Rieffel, M.A.: Burnside’s theorem for representations of Hopf algebras. J. Algebra 6, 123–130 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors thank Sebastian Burciu for scientific exchanges related to Sect. 5 by email in 2011 and in Porto May 2012. The second author thanks Martin Lorenz for discussions in Philadelphia in 2012. Research for this paper was funded by the European Regional Development Fund through the programme COMPETE and by the Portuguese Government through the FCT under the project PE-C/MAT/UI0144/2011.nts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Kadison.

Additional information

Communicated by Christoph Schweigert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, A., Kadison, L. & Young, C. Algebraic quotient modules and subgroup depth. Abh. Math. Semin. Univ. Hambg. 84, 267–283 (2014). https://doi.org/10.1007/s12188-014-0097-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12188-014-0097-3

Keywords

Mathematics Subject Classification (2000)

Navigation