Skip to main content
Log in

Kardiale Ionenkanalerkrankungen

Von der Pathophysiologie bis zur Risikostratifizierung

Cardiac channelopathies

From pathophysiology to risk stratification

  • Interventionelle Elektrophysiologie
  • Published:
Der Kardiologe Aims and scope

Zusammenfassung

Kardiale Ionenkanalerkrankungen beruhen auf Mutationen von Ionenkanälen und anderen Funktionsproteinen. Ohne strukturelle Veränderungen des Herzens hervorzurufen, können sie durch Störung der zellulären Repolarisation den plötzlichen Herztod hervorrufen. Ionenkanalerkrankungen lassen sich pathophysiologisch anhand der Funktion der mutierten Proteine einteilen. Für den klinischen Alltag ist die Einteilung nach klinischen und EKG-Kriterien wichtiger. Zu den häufigsten Ionenkanalerkrankungen gehören die verschiedenen QT-Syndrome, das Brugada-Syndrom und die katecholaminergen polymorphen ventrikulären Tachykardien. Therapieoptionen bestehen aus einer medikamentösen Therapie und/oder einer ICD-Implantation. Nur ein Teil der Patienten mit entsprechenden Mutation oder dem jeweils charakteristischen EKG-Bild ist symptomatisch, sodass eine Indikation zur ICD-Implantation angesichts der zahlreichen Komplikationsmöglichkeiten mit Vorsicht gestellt werden muss. Generell besteht eine Empfehlung zur ICD-Therapie bei Zustand nach überlebtem plötzlichem Herztod. Die Entscheidung zur primär-prophylaktischen Implantation ist schwieriger und sollte auf einer gründlichen Risikostratifizierung beruhen.

Abstract

Cardiac channelopathies are caused by mutations of ion channels and other functional proteins. Without causing structural heart disease, they can cause sudden cardiac death by disturbing cellular repolarization. Channelopathies can be distinguished by the proteins carrying the specific mutation. More relevant for clinical practice is a nomenclature based on ECG and clinical criteria. Frequent channelopathies are the different QT syndromes, the Brugada syndrome and catecholaminergic polymorphic tachycardia. Therapy options consist of pharmacological and/or ICD therapy. Only part of the patient population with the specific mutation or characteristic ECG pattern is symptomatic; therefore and because of possible complications, ICD therapy has to be considered with caution. Generally, ICD therapy is indicated after survival of sudden cardiac death. The decision to implant an ICD for primary prevention is more difficult and should be based on a thorough risk stratification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Literatur

  1. Ackerman MJ, Siu BL et al (2001) Postmortem molecular analysis of SCN5A defects in sudden infant death syndrome. JAMA 286(18):2264–2269

    Article  CAS  PubMed  Google Scholar 

  2. Antzelevitch C, Yan GX (2009) J wave syndromes. Heart Rhythm 7(4)549–558

    Google Scholar 

  3. Brignole M, Alboni P et al (2004) Guidelines on management (diagnosis and treatment) of syncope-update 2004. Executive summary. Eur Heart J 25(22):2054–2072

    Article  PubMed  Google Scholar 

  4. Brink PA, Crotti L et al (2005) Phenotypic variability and unusual clinical severity of congenital long-QT syndrome in a founder population. Circulation 112(17):2602–2610

    Article  PubMed  Google Scholar 

  5. Brugada P, Brugada J (1992) Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol 20(6):1391–1396

    Article  CAS  PubMed  Google Scholar 

  6. Darbar D, Kannankeril PJ et al (2008) Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation 117(15):1927–1935

    Article  CAS  PubMed  Google Scholar 

  7. Dumaine R, Wang Q et al (1996) Multiple mechanisms of Na+ channel-linked long-QT syndrome. Circ Res 78(5):916–924

    CAS  PubMed  Google Scholar 

  8. Eckardt L (2009) LQT3: Who is at risk for sudden cardiac death? Heart Rhythm 6(1):121–122

    Article  PubMed  Google Scholar 

  9. Eckardt L, Haverkamp W et al (1998) Experimental models of torsade de pointes. Cardiovasc Res 39(1):178–193

    Article  CAS  PubMed  Google Scholar 

  10. Eckardt L, Kirchhof P et al (1999) Transient local changes in right ventricular monophasic action potentials due to ajmaline in a patient with Brugada syndrome. J Cardiovasc Electrophysiol 10(7):1010–1015

    Article  CAS  PubMed  Google Scholar 

  11. Eckardt L, Probst V et al (2005) Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation 111(3):257–263

    Article  PubMed  Google Scholar 

  12. Gaita F, Giustetto C et al (2003) Short QT syndrome: a familial cause of sudden death. Circulation 108(8):965–970

    Article  PubMed  Google Scholar 

  13. Goldenberg I, Mathew J et al (2006) Corrected QT variability in serial electrocardiograms in long QT syndrome: the importance of the maximum corrected QT for risk stratification. J Am Coll Cardiol 48(5):1047–1052

    Article  PubMed  Google Scholar 

  14. Gussak I, Brugada P et al (2000) Idiopathic short QT interval: a new clinical syndrome? Cardiology 94(2):99–102

    Article  CAS  PubMed  Google Scholar 

  15. Haissaguerre M, Derval N et al (2008) Sudden cardiac arrest associated with early repolarization. N Engl J Med 358(19):2016–2023

    Article  CAS  PubMed  Google Scholar 

  16. Haverkamp W, Breithardt G et al (2000) The potential for QT prolongation and pro-arrhythmia by non-anti-arrhythmic drugs: clinical and regulatory implications. Report on a Policy Conference of the European Society of Cardiology. Cardiovasc Res 47(2):219–233

    Article  CAS  PubMed  Google Scholar 

  17. Huikuri HV, Castellanos A et al (2001) Sudden death due to cardiac arrhythmias. N Engl J Med 345(20):1473–1482

    Article  CAS  PubMed  Google Scholar 

  18. Zipes DP, Jalife J (2009) Cardiac electrophysiology – from cell to bedside, 5th edn. Saunders/Elsevier

  19. Jung W, Andresen D et al (2006) Guidelines for the implantation of defibrillators. Clin Res Cardiol 95(12):696–708

    Article  CAS  PubMed  Google Scholar 

  20. Junker J, Haverkamp W et al (2002) Amiodarone and acetazolamide for the treatment of genetically confirmed severe Andersen syndrome. Neurology 59(3):466

    CAS  PubMed  Google Scholar 

  21. Lahat H, Pras E et al (2001) A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet 69(6):1378–1384

    Article  CAS  PubMed  Google Scholar 

  22. Leenhardt A, Lucet V et al (1995) Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation 91(5):1512–1519

    CAS  PubMed  Google Scholar 

  23. Milberg P, Eckardt L et al (2002) Divergent proarrhythmic potential of macrolide antibiotics despite similar QT prolongation: Fast phase 3 repolarization prevents early afterdepolarizations and torsade de pointes. J Pharmacol Exp Ther 303(1):218–225

    Article  CAS  PubMed  Google Scholar 

  24. Milberg P, Pott C et al (2008) Inhibition of the Na+/Ca2+ exchanger suppresses torsades de pointes in an intact heart model of long QT syndrome-2 and long QT syndrome-3. Heart Rhythm 5(10):1444–1452

    Article  PubMed  Google Scholar 

  25. Monnig G, Eckardt L et al (2006) Electrocardiographic risk stratification in families with congenital long QT syndrome. Eur Heart J 27(17):2074–2080

    Article  PubMed  Google Scholar 

  26. Monnig G, Schulze-Bahr E et al (2002) Clinical aspects and molecular genetics of the Jervell- and Lange-Nielsen syndrome. Z Kardiol 91(5):380–388

    Article  CAS  PubMed  Google Scholar 

  27. Nerbonne JM, Kass RS (2005) Molecular physiology of cardiac repolarization. Physiol Rev 85(4):1205–1253

    Article  CAS  PubMed  Google Scholar 

  28. Nuyens D, Stengl M et al (2001) Abrupt rate accelerations or premature beats cause life-threatening arrhythmias in mice with long-QT3 syndrome. Nat Med 7(9):1021–1027

    Article  CAS  PubMed  Google Scholar 

  29. Patel U, Pavri BB (2009) Short QT syndrome: a review. Cardiol Rev 17(6):300–303

    Article  PubMed  Google Scholar 

  30. Pogwizd SM, Bers DM (2004) Cellular basis of triggered arrhythmias in heart failure. Trends Cardiovasc Med 14(2):61–66

    Article  CAS  PubMed  Google Scholar 

  31. Pott C, Goldhaber JI (2006) Is the ryanodine receptor a target for antiarrhythmic therapy? Circ Res 98(10):1232–1233

    Article  CAS  PubMed  Google Scholar 

  32. Pott C, Goldhaber JI et al (2007) Homozygous overexpression of the Na+-Ca2+ exchanger in mice: evidence for increased transsarcolemmal Ca2+ fluxes. Ann N Y Acad Sci 1099:310–314

    Article  CAS  PubMed  Google Scholar 

  33. Pott C, Philipson KD et al (2005) Excitation-contraction coupling in Na+-Ca2+ exchanger knockout mice: reduced transsarcolemmal Ca2+ flux. Circ Res 97(12):1288–1295

    Article  CAS  PubMed  Google Scholar 

  34. Pott C, Ren X et al (2007) Mechanism of shortened action potential duration in Na+-Ca2+ exchanger knockout mice. Am J Physiol Cell Physiol 292(2):C968–C973

    Article  CAS  PubMed  Google Scholar 

  35. Pott AM, Schulte J, Fortmüller L et al (2008) Homozygous overexpression of the cardiac Na+/Ca2+ exchanger increases susceptibility to ventricular arrhythmia in transgenic mice. 74. Jahrestagung der Deutschen Gesellschaft für Kardiologie, Mannheim

  36. Priori SG, Napolitano C et al (2002) Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 106(1):69–74

    Article  CAS  PubMed  Google Scholar 

  37. Priori SG, Napolitano C et al (2004) Association of long QT syndrome loci and cardiac events among patients treated with beta-blockers. JAMA 292(11):1341–1344

    Article  CAS  PubMed  Google Scholar 

  38. Priori SG, Napolitano C et al (2001) Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 103(2):196–200

    CAS  PubMed  Google Scholar 

  39. Priori SG, Schwartz PJ et al (2003) Risk stratification in the long-QT syndrome. N Engl J Med 348(19):1866–1874

    Article  PubMed  Google Scholar 

  40. Probst V, Veltmann C et al (n d) Long-term prognosis of patients diagnosed with Brugada syndrome: Results from the finger Brugada syndrome registry. Circulation 121(5):635–643

    Article  Google Scholar 

  41. Rolf S, Bruns HJ et al (2003) The ajmaline challenge in brugada syndrome: diagnostic impact, safety and recommended protocol. Eur Heart J 24(12):1104–1112

    Article  CAS  PubMed  Google Scholar 

  42. Schulze-Bahr E, Eckardt L et al (2003) Sodium channel gene (SCN5A) mutations in 44 index patients with Brugada syndrome: different incidences in familial and sporadic disease. Hum Mutat 21(6):651–652

    Article  PubMed  Google Scholar 

  43. Schwartz PJ, Priori SG et al (2001) Genotype-phenotype correlation in the long-QT syndrome: gene-specific triggers for life-threatening arrhythmias. Circulation 103(1):89–95

    CAS  PubMed  Google Scholar 

  44. Schwartz PJ, Spazzolini C et al (2006) The jervell and lange-nielsen syndrome: natural history, molecular basis and clinical outcome. Circulation 113(6):783–790

    Article  PubMed  Google Scholar 

  45. Wilde AA, Antzelevitch C, Borggrefe M et al (2002) Proposed diagnostic criteria for the Brugada syndrome. Eur Heart J 23:1648–1654

    CAS  PubMed  Google Scholar 

  46. Splawski I, Timothy KW et al (2004) Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119(1):19–31

    Article  CAS  PubMed  Google Scholar 

  47. Sumitomo N, Harada K et al (2003) Catecholaminergic polymorphic ventricular tachycardia: electrocardiographic characteristics and optimal therapeutic strategies to prevent sudden death. Heart 89(1):66–70

    Article  CAS  PubMed  Google Scholar 

  48. Tristani-Firouzi M, Jensen JL et al (2002) Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome). J Clin Invest 110(3):381–388

    CAS  PubMed  Google Scholar 

  49. Watanabe H, Chopra N et al (2009) Flecainide prevents catecholaminergic polymorphic ventricular tachycardia in mice and humans. Nat Med 15(4):380–383

    Article  CAS  PubMed  Google Scholar 

  50. Willems S, Eckardt L et al (2007) Guideline invasive electrophysiological diagnostics. Clin Res Cardiol 96(9):634–651

    Article  CAS  PubMed  Google Scholar 

  51. Wolf CM, Berul CI (2006) Inherited conduction system abnormalities – one group of diseases, many genes. J Cardiovasc Electrophysiol 17(4):446–455

    Article  PubMed  Google Scholar 

  52. Zareba W, Moss AJ et al (1998) Influence of genotype on the clinical course of the long-QT syndrome. International long-QT Syndrome Registry Research Group. N Engl J Med 339(14):960–965

    Article  CAS  PubMed  Google Scholar 

  53. Zhang L, Benson DW et al (2005) Electrocardiographic features in Andersen-Tawil syndrome patients with KCNJ2 mutations: characteristic T-U-wave patterns predict the KCNJ2 genotype. Circulation 111(21):2720–2726

    Article  PubMed  Google Scholar 

  54. Zipes DP, Camm AJ et al (2006) ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing committee to develop guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society. Europace 8(9):746–837

    Article  PubMed  Google Scholar 

  55. Wedekind H, Schulze-Bahr E, Debus V et al (2007) Cardiac arrhythmias and sudden death in infancy: implication for the medicolegal investigation. Int J Legal Med 121:245–257

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Pott.

Additional information

___Unterstützung_____

L. Eckardt ist der Inhaber der Peter-Osypka-Stiftungsprofessur für Experimentelle und Klinische Elektrophysiologie. C. Pott wird durch ein Rückkehrer-Stipendium der Deutschen Forschungsgesellschaft (Po 1004-1/2) und Drittmittel des Instituts für Innovative Klinische Forschung der Universität Münster (IMF Po 12 06 07) unterstützt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pott, C., Dechering, D., Muszynski, A. et al. Kardiale Ionenkanalerkrankungen. Kardiologe 4, 295–305 (2010). https://doi.org/10.1007/s12181-010-0268-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12181-010-0268-0

Schlüsselwörter

Keywords

Navigation