Skip to main content
Log in

Updates in biological therapies for knee injuries: full thickness cartilage defect

  • Knee: Stem Cells (M Ferretti, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Full thickness cartilage defect might occur at different ages, but a focal defect is a major concern in the knee of young athletes. It causes impairment and does not heal by itself. Several techniques were described to treat symptomatic full thickness cartilage defect. Recently, several advances were described on the known techniques of microfracture, osteochondral allograft, cell therapy, and others. This article brings an update of current literature on these well-described techniques for full thickness cartilage defect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bhosale AM, Richardson JB. Articular cartilage: structure, injuries and review of management. Br Med Bull. 2008;87:77–95.

  2. Cavalcanti Filho MMC, Doca D, Cohen M, Ferretti M. Updating on diagnosis and treatment of chondral lesion of the knee. Rev Bras Ortop. 2012;47:12–20.

    Google Scholar 

  3. Reverte-Vinaixa MM, Joshi N, Díaz-Ferreiro EW, Teixidor-Serra J, Dominguez-Oronoz R. Medium-term outcome of mosaicplasty for grade III-IV cartilage defects of the knee. J Orthop Surg. 2013;21:4–9.

    Google Scholar 

  4. Filardo G, Kon E, Di Martino A, Di Matteo B, Merli ML, Cenacchi A, et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord. 2012;13:229.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Magnussen RA, Dunn WR, Carey JL, Spindler KP. Treatment of focal articular cartilage defects in the knee: a systematic review. Clin Orthop Relat Res. 2008;466:952–62.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med. 1994;331:889–95.

    Article  CAS  PubMed  Google Scholar 

  7. Mobasheri A. The future of osteoarthritis therapeutics: emerging biological therapy. Curr Rheumatol Rep. 2013;15:385.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Rodriguez-Merchan EC. Regeneration of articular cartilage of the knee. Rheumatol Int. 2013;33:837–45.

    Article  CAS  PubMed  Google Scholar 

  9. Harris D, Brophy RH, Siston RA, Flanigan DC. Treatment of chondral defects in the athlete’s knee. Arthroscopy. 2010;26:841–52.

    Article  PubMed  Google Scholar 

  10. Gobbi A, Karnatzikos G, Kumar A. Long-term results after microfracture treatment for full-thickness knee chondral lesions in athletes. Knee Surg Sports Traumatol Arthrosc. 2014; [In press]. The article is a long-term outcomes study showing that microfracture provides good outcomes in young patients with small lesions. Worsening of outcomes is expected after 2 years follow-up.

  11. Steadman JR, Rodkey WG, Briggs KK, Rodrigo JJ. The microfracture technic in the management of complete cartilage defects in the knee joint. Orthopade. 1999;28:26–32.

    CAS  PubMed  Google Scholar 

  12. Kim SH, Park DY, Min BH. A new era of cartilage repair using cell therapy and tissue engineering: turning current clinical limitations into new ideas. J Tissue Eng Regen Med. 2012;9:240–8.

    Article  CAS  Google Scholar 

  13. Suwannaloet W, Laupattarakasem W, Sukon P, Ong-Chai S, Laupattarakasem P. Combined effect of subchondral drilling and hyaluronic acid with/without diacerein in full-thickness articular cartilage lesion in rabbits. ScientificWorldJournal. 2012;2012:310745.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Zantop T, Petersen W. Arthroscopic implantation of a matrix to cover large chondral defect during microfracture. Arthroscopy. 2009;25:1354–60.

    Article  PubMed  Google Scholar 

  15. Gigante A, Cecconi S, Calcagno S, Busilacchi A, Enea D, Phil M. Arthroscopic knee cartilage repair with covered microfracture and bone marrow concentrate. Arthrosc Tech. 2012;1:e175–80.

    Article  PubMed Central  PubMed  Google Scholar 

  16. McIlwraith CW, Frisbie DD, Rodkey WG, Kisiday JD, Werpy NM, Kawcak CE, et al. Evaluation of intra-articular mesenchymal stem cells to augment healing of microfractured chondral defects. Arthroscopy. 2011;27:1552–61.

    Article  PubMed  Google Scholar 

  17. Lee KB, Wang VT, Chan YH, Hui JH. A novel, minimally-invasive technique of cartilage repair in the human knee using arthroscopic microfracture and injections of mesenchymal stem cells and hyaluronic acid—a prospective comparative study on safety and short-term efficacy. Ann Acad Med Singap. 2012;41:511–7.

    PubMed  Google Scholar 

  18. Milano G, Deriu L, Passino ER, Masala G, Manunta A, Postacchini R, et al. Repeated platelet concentrate injections enhance reparative response of microfractures in the treatment of chondral defects of the knee: an experimental study in an animal model arthroscopy. Arthroscopy. 2012;28:688–701.

    Article  PubMed  Google Scholar 

  19. Hapa O, Çakici H, Yuksel HY, Firat T, Kukner A, Aygun H. Does platelet-rich plasma enhance microfracture treatment for chronic focal chondral defects? An in-vivo study performed in a rat model. Acta Orthop Traumatol Turc. 2013;47:201–7.

    Article  PubMed  Google Scholar 

  20. Dai L, He Z, Zhang X, Hu X, Yuan L, Qiang M, et al. One-step repair for cartilage defects in a rabbit model: a technique combining the perforated decalcified cortical-cancellous bone matrix scaffold with microfracture. Am J Sports Med. 2014; [In press].

  21. Power J, Hernandez P, Guehring H, Getgood A, Henson FJ. Intra-articular injection of rhFGF-18 improves the healing in microfracture treated chondral defects in an ovine model. Orthop Res. 2014; [In press].

  22. Guney A, Akar M, Karaman I, Oner M, Guney B. Clinical outcomes of platelet rich plasma [PRP] as an adjunct to microfracture surgery in osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2013; [In press].

  23. Chung JY, Lee DH, Kim TH, Kwack KS, Yoon KH, Min BH. Cartilage extra-cellular matrix biomembrane for the enhancement of microfractured defects. Knee Surg Sports Traumatol Arthrosc. 2013; [In press].

  24. Enea D, Cecconi S, Calcagno S, Busilacchi A, Manzotti S, Kaps C, et al. Single-stage cartilage repair in the knee with microfracture covered with a resorbable polymer-based matrix and autologous bone marrow concentrate. Knee. 2013;20:562–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tuncay I, Erkocak OF, Acar MA, Toy H. The effect of hyaluronan combined with microfracture on the treatment of chondral defects: an experimental study in a rabbit model. Eur J Orthop Surg Traumatol. 2013;23:753–8.

    Article  PubMed  Google Scholar 

  26. Lee GW, Son JH, Kim JD, Jung GH. Is platelet-rich plasma able to enhance the results of arthroscopic microfracture in early osteoarthritis and cartilage lesion over 40 years of age? Eur J Orthop Surg Traumatol. 2013;23:581–7.

    Article  PubMed  Google Scholar 

  27. Vaisman A, Figueroa D, Calvo R, Espinosa M, Melean R, Gallegos M, et al. Steroids and platelet-rich plasma as coadjuvants to microfracture for the treatment of chondral lesions in an animal model. Can the healing be enhanced? Cartilage. 2012;3:118–27.

    Article  CAS  Google Scholar 

  28. Zhang X, Zheng Z, Liu P, Ma Y, Lin L, Lang N, et al. The synergistic effects of microfracture, perforated decalcified cortical bone matrix and adenovirus-bone morphogenetic protein-4 in cartilage defect repair. Biomaterials. 2008;29:4616–29.

    Article  CAS  PubMed  Google Scholar 

  29. Richter W. Mesenchymal stem cells and cartilage in situ regeneration. J Intern Med. 2009;266:390–405.

    Article  CAS  PubMed  Google Scholar 

  30. Chen H, Hoemann CD, Sun J, Chevrier A, McKee MD, Shive MS, et al. Depth of subchondral perforation influences the outcome of bone marrow stimulation cartilage repair. J Orthop Res. 2011;29:1178–84.

    Article  PubMed  Google Scholar 

  31. Chen H, Chevrier A, Hoemann CD, Sun J, Ouyang W, Buschmann MD. Characterization of subchondral bone repair for marrow-stimulated chondral defects and its relationship to articular cartilage resurfacing. Am J Sports Med. 2011;39:1731–40.

    Article  PubMed  Google Scholar 

  32. Görtz S, Bugbee WD. Allografts in articular cartilage repair. Instr Course Lect. 2007;56:469–80.

    PubMed  Google Scholar 

  33. Cole BJ, Pascual-Garrido C, Grumet RC. Surgical management of articular cartilage defects in the knee. J Bone Joint Surg Am. 2009;91:1778–90.

    PubMed  Google Scholar 

  34. Williams III RJ, Ranawat AS, Potter HG, Carter T, Warren RF. Fresh stored allografts for the treatment of osteochondral defects of the knee. J Bone Joint Surg Am. 2007;89:718–26.

    Article  PubMed  Google Scholar 

  35. Williams III RJ, Dreese JC, Chen CT. Chondrocyte survival and material properties of hypothermically stored cartilage: an evaluation of tissue used for osteochondral allograft transplantation. Am J Sports Med. 2004;32:132–9.

    Article  PubMed  Google Scholar 

  36. Ball ST, Amiel D, Williams SK, Tontz W, Chen AC, Sah RL, et al. The effects of storage on fresh human osteochondral allografts. Clin Orthop Relat Res. 2004;418:246–52.

    Article  PubMed  Google Scholar 

  37. Pearsall IAW, Tucker JA, Hester RB, Heitman RJ. Chondrocyte viability in refrigerated osteochondral allografts used for transplantation within the knee. Am J Sports Med. 2004;32:125–31.

    Article  PubMed  Google Scholar 

  38. Pallante AL, Görtz S, Chen AC, Healey RM, Chase DC, Ball ST, et al. Treatment of articular cartilage defects in the goat with frozen vs fresh osteochondral allografts: effects on cartilage stiffness, zonal composition, and structure at six months. J Bone Joint Surg Am. 2012;94:1984–95.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Jomha NM, Elliott JA, Law GK, Maghdoori B, Forbes JF, Abazari A, et al. Vitrification of intact human articular cartilage. Biomaterials. 2012;33:6061–8. The article shows that vitrification of intact human articular cartilage by immersing in liquid nitrogen for up to 3 months successfully keeps a good cell viability of articular cartilage on its bone base; it may make it possible to bank this tissue for a long term.

    Article  CAS  PubMed  Google Scholar 

  40. Pallante AL, Bae WC, Chen AC, Görtz S, Bugbee WD, Sah RL. Chondrocyte viability is higher after prolonged storage at 37 degrees C than at 4 degrees C for osteochondral grafts. Am J Sports Med. 2009;37 Suppl 1:24S–32.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Gomoll AH, Yoshioka H, Watanabe Y, Dunn JC, Minas T. Preoperative measurement of cartilage defects by MRI underestimates lesion size. Cartilage. 2011;2:389–93.

    Article  Google Scholar 

  42. Lattermann C, Romine SE. Osteochondral allografts: state of the art. Clin Sports Med. 2009;28:285–301.

    Article  PubMed  Google Scholar 

  43. Hennig A, Abate J. Osteochondral allografts in the treatment of articular cartilage injuries of the knee. Sports Med Arthrosc. 2007;15:126–32.

    Article  PubMed  Google Scholar 

  44. Dabiri Y, Li LP. Influences of the depth-dependent material inhomogeneity of articular cartilage on the fluid pressurization in the human knee. Med Eng Phys. 2013;35:1591–8.

    Article  CAS  PubMed  Google Scholar 

  45. Vahdati A, Wagner DR. Implant size and mechanical properties influence the failure of the adhesive bond between cartilage implants and native tissue in a finite element analysis. J Biomech. 2013;46:1554–60.

    Article  PubMed  Google Scholar 

  46. Gross AE, Kim W, Las Heras F, Backstein D, Safir O, Pritzker KPH. Fresh osteochondral allografts for posttraumatic knee defects: long-term follow-up. Clin Orthop Relat Res. 2008;466:1863–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Levy YD, Gortz S, Pulido PA, McCauley JC, Bugbee WD. Do fresh osteochondral allografts successfully treat femoral condyle lesions? Clin Orthop Relat Res. 2013;471:231–7. Article described outcomes of 129 knees treated with Osteochondral allograft on the medial femoral condyle having significantly improvement of pain and function at 10 years follow-up.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Rasmussen TJ, Feder SM, Butler DL, Noyes FR. The effects of 4 Mrad of gamma irradiation on the initial mechanical properties of bone-patellar tendon-bone grafts. Arthroscopy. 1994;10:188–97.

    Article  CAS  PubMed  Google Scholar 

  49. Enneking WF, Mindell ER. Observations on massive retrieved human allografts. J Bone Joint Surg Am. 1991;73:1123–42.

    CAS  PubMed  Google Scholar 

  50. Wingenfeld C, Egli RJ, Hempfing A, Ganz R, Leunig M. Cryopreservation of osteochondral allografts: dimethyl sulfoxide promotes angiogenesis and immune tolerance in mice. J Bone Joint Surg Am. 2002;84–A:1420–9.

    PubMed  Google Scholar 

  51. Ohlendorf C, Tomford WW, Mankin HJ. Chondrocyte survival in cryopreserved osteochondral articular cartilage. J Orthop Res. 1996;14:413–6.

    Article  CAS  PubMed  Google Scholar 

  52. Schachar NS, Novak K, Hurtig M, Muldrew K, McPherson R, Wohl G, et al. Transplantation of cryopreserved osteochondral Dowel allografts for repair of focal articular defects in an ovine model. J Orthop Res. 1999;17:909–19.

    Article  CAS  PubMed  Google Scholar 

  53. Czitrom AA, Keating S, Gross AE. The viability of articular cartilage in fresh osteochondral allografts after clinical transplantation. J Bone Joint Surg Am. 1990;72:574–81.

    CAS  PubMed  Google Scholar 

  54. Redman SN, Oldfield SF, Archer CW. Current strategies for articular cartilage repair. Eur Cell Mater. 2005;9:23–32.

    CAS  PubMed  Google Scholar 

  55. Bentley G, Biant LC, Carrington RW, Akmal M, Goldberg A, Williams AM, et al. A prospective, randomised comparison of autologous chondrocyte implantation vs mosaicplasty for osteochondral defects in the knee. J Bone Joint Surg (Br). 2003;85:223–30.

    Article  CAS  Google Scholar 

  56. Hunziker EB. Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartil. 2002;10:432–63.

    Article  CAS  PubMed  Google Scholar 

  57. Buckwalter JA, Mankin HJ. Articular cartilage repair and transplantation. Arthritis Rheum. 1998;41:1331–42.

    Article  CAS  PubMed  Google Scholar 

  58. Darling EM, Athanasiou KA. Biomechanical strategies for articular cartilage regeneration. Ann Biomed Eng. 2003;31:1114–24.

    Article  PubMed  Google Scholar 

  59. Goessler UR, Bieback K, Bugert P, Naim R, Schafer C, Sadick H, et al. Human chondrocytes differentially express matrix modulators during in vitro expansion for tissue engineering. Int J Mol Med. 2005;16:509–15.

    CAS  PubMed  Google Scholar 

  60. Wenger R, Hans MG, Welter JF, Solchaga LA, Sheu YR, Malemud CJ. Hydrostatic pressure increases apoptosis in cartilage-constructs produced from human osteoarthritic chondrocytes. Front Biosci. 2006;11:1690–5.

    Article  CAS  PubMed  Google Scholar 

  61. Dehne T, Karlsson C, Ringe J, Sittinger M, Lindahl A. Chondrogenic differentiation potential of osteoarthritic chondrocytes and their possible use in matrix-associated autologous chondrocyte transplantation. Arthritis Res Ther. 2009;11:R133.

    Article  PubMed Central  PubMed  Google Scholar 

  62. Hidaka C, Cheng C, Alexandre D, Bhargava M, Torzilli PA. Maturational differences in superficial and deep zone articular chondrocytes. Cell Tissue Res. 2006;323:127–35.

    Article  CAS  PubMed  Google Scholar 

  63. Pestka JM, Schmal H, Salzmann G, Hecky J, Südkamp NP, Niemeyer P. In vitro cell quality of articular chondrocytes assigned for autologous implantation in dependence of specific patient characteristics. Arch Orthop Trauma Surg. 2011;131:779–89.

    Article  PubMed  Google Scholar 

  64. Marlovits S, Tichy B, Truppe M, Gruber D, Vécsei V. Chondrogenesis of aged human articular cartilage in a scaffold-free bioreactor. Tissue Eng. 2003;9:1215–26.

    Article  CAS  PubMed  Google Scholar 

  65. Foldager CB, Nielsen AB, Munir S, Ulrich-Vinther M, Søballe K, Bünger C, et al. Combined 3D and hypoxic culture improves cartilage-specific gene expression in human chondrocytes. Acta Orthop. 2011;82:234–40.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Ströbel S, Loparic M, Wendt D, Schenk AD, Candrian C, Lindberg RL, et al. Anabolic and catabolic responses of human articular chondrocytes to varying oxygen percentages. Arthritis Res Ther. 2010;12:R34.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Barbero A, Grogan S, Schäfer D, Heberer M, Mainil-Varlet P, Martin I. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthr Cartil. 2004;12:476–84.

    Article  PubMed  Google Scholar 

  68. Terada S, Fuchs JR, Yoshimoto H, Fauza DO, Vacanti JP. In vitro cartilage regeneration from proliferated adult elastic chondrocytes. Ann Plast Surg. 2005;55:196–201.

    Article  CAS  PubMed  Google Scholar 

  69. Hu JC, Athanasiou KA. A self-assembling process in articular cartilage tissue engineering. Tissue Eng. 2006;12:969–79.

    Article  CAS  PubMed  Google Scholar 

  70. Kuroda R, Ishida K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr Cartil. 2007;15:226–31.

    Article  CAS  PubMed  Google Scholar 

  71. Wakitani S, Okabe T, Horibe S, Mitsuoka T, Saito M, Koyama T, et al. Safety of autologous bone marrow-derived mesenchymal stem cell transplantation for cartilage repair in 41 patients with 45 joints followed for up to 11 years and 5 months. J Tissue Eng Regen Med. 2011;5:146–50. The article describes the safety for use of bone-marrow mesenchymal stem cell in a long term follow-up. It is an interesting finding in order to promote the use of stem cells for cartilage repair.

    Article  PubMed  Google Scholar 

  72. Vinardell T, Sheehy EJ, Buckley CT, Kelly DJ. A comparison of the functionality and in vivo phenotypic stability of cartilaginous tissues engineered from different stem cell sources. Tissue Eng Part A. 2012;18:1161–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum. 2005;52:2521–9.

    Article  PubMed  Google Scholar 

  74. Roelofs AJ, Rocke JP, De Bari C. Cell-based approaches to joint surface repair: a research perspective. Osteoarthr Cartil. 2013;21:892–900.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH. Autologous bone marrow-derived mesenchymal stem cells vs autologous chondrocyte implantation: an observational cohort study. Am J Sports Med. 2010;38:1110–6.

    Article  PubMed  Google Scholar 

  76. Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008;60:243–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Miot S, Scandiucci de Freitas P, Wirz D, Daniels AU, Sims TJ, Hollander AP, et al. Cartilage tissue engineering by expanded goat articular chondrocytes. J Orthop Res. 2006;24:1078–85.

    Article  CAS  PubMed  Google Scholar 

  78. Eyrich D, Wiese H, Maier G, Skodacek D, Appel B, Sarhan H, et al. In vitro and in vivo cartilage engineering using a combination of chondrocyte-seeded long-term stable fibrin gels and polycaprolactone-based polyurethane scaffolds. Tissue Eng. 2007;13:2207–18.

    Article  CAS  PubMed  Google Scholar 

  79. Bartlett W, Gooding CR, Carrington RW, Skinner JA, Briggs TW, Bentley G. Autologous chondrocyte implantation at the knee using a bilayer collagen membrane with bone graft. A preliminary report. J Bone Joint Surg (Br). 2005;87:330–2.

    Article  CAS  Google Scholar 

  80. Basad E, Ishaque B, Bachmann G, Stürz H, Steinmeyer J. Matrix-induced autologous chondrocyte implantation vs microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc. 2010;18:519–27.

    Article  PubMed  Google Scholar 

  81. Kon E, Filardo G, Condello V, Collarile M, Di Martino A, Zorzi C, et al. Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am J Sports Med. 2011;39:1668–75.

    Article  PubMed  Google Scholar 

  82. de Windt TS, Concaro S, Lindahl A, Saris DB, Brittberg M. Strategies for patient profiling in articular cartilage repair of the knee: a prospective cohort of patients treated by one experienced cartilage surgeon. Knee Surg Sports Traumatol Arthrosc. 2012;20:2225–32.

    Article  PubMed Central  PubMed  Google Scholar 

  83. Brix MO, Stelzeneder D, Chiari C, Koller U, Nehrer S, Dorotka R, et al. Treatment of full-thickness chondral defects with hyalograft C in the knee: long-term results. Am J Sports Med. 2014; [In press].

  84. Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med. 2014;42:648–57. The article showed that bone marrow cells harvested from iliac crest implanted with a collagen membrane in a 1-step procedure leads to a good clinical outcomes in a 3 year follow-up. The 1-step technique is an improvement because it does not need further culture of chondrocytes or mesenchymal stem cells.

    Article  PubMed  Google Scholar 

  85. Chung C, Mesa J, Randolph MA, Yaremchuk M, Burdick JA. Influence of gel properties on neocartilage formation by auricular chondrocytes photoencapsulated in hyaluronic acid networks. J Biomed Mater Res A. 2006;77:518–25.

    Article  PubMed Central  PubMed  Google Scholar 

  86. Welsch GH, Mamisch TC, Zak L, Blanke M, Olk A, Marlovits S, et al. Evaluation of cartilage repair tissue after matrix-associated autologous chondrocyte transplantation using a hyaluronic-based or a collagen-based scaffold with morphological MOCART scoring and biochemical T2 mapping: preliminary results. Am J Sports Med. 2010;38:934–42.

    Article  PubMed  Google Scholar 

  87. Yoon DM, Fisher JP. Chondrocyte signaling and artificial matrices for articular cartilage engineering. Adv Exp Med Biol. 2006;585:67–86.

    Article  CAS  PubMed  Google Scholar 

  88. Pagnotto MR, Wang Z, Karpie JC, Ferretti M, Xiao X, Chu CR. Adeno-associated viral gene transfer of transforming growth factor-beta 1 to human mesenchymal stem cells improves cartilage repair. Gene Ther. 2007;14:804–13.

    Article  CAS  PubMed  Google Scholar 

  89. Kock L, Van Donkelaar CC, Ito K. Tissue engineering of functional articular cartilage: the current status. Cell Tissue Res. 2012;347:613–27.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Alexandre Pedro Nicolini, Rogerio Teixeira Carvalho, Bruno Dragone, Mario Lenza, Moises Cohen, and Mario Ferretti declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Ferretti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicolini, A.P., Carvalho, R.T., Dragone, B. et al. Updates in biological therapies for knee injuries: full thickness cartilage defect. Curr Rev Musculoskelet Med 7, 256–262 (2014). https://doi.org/10.1007/s12178-014-9226-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-014-9226-y

Keywords

Navigation