Skip to main content

Advertisement

Log in

Tools for Cardiovascular Risk Assessment in Clinical Practice

  • Novel + Emerging Risk Factors (K Nasir and R Santos, Section Editors)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

Precise risk stratification of atherosclerotic cardiovascular disease guides best management and therefore is a public health priority. In addition to risk estimation using traditional risk factors, tools such as coronary artery calcium, high-sensitivity C-reactive protein, ankle-brachial index and carotid imaging, and clinical features such as family history of premature coronary heart disease may offer opportunities for a more personalized risk assessment. In this review, we discuss the strengths and limitations of each of these tools, focusing on the evidence provided by the latest studies relevant to the field. Among them, coronary artery calcium currently stands out as the most powerful tool for cardiovascular risk assessment, as recognized by the 2013 ACC/AHA Risk Assessment Guideline. Recent studies have expanded our knowledge regarding its value for improving the detection of both low and high absolute risk within clinically relevant subgroups, as well as for cost-effectively guiding preventive therapy allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABI:

Ankle-brachial index

ACC/AHA:

American College of Cardiology/American Heart Association

ASCVD:

Atherosclerotic cardiovascular disease

CAC:

Coronary artery calcium

CAC = 0:

Coronary artery calcium score of zero

CIMT:

Carotid intima-media thickness

CKD:

Chronic kidney disease

CT:

Computed tomography

CVD:

Cardiovascular disease

hsCRP:

High-sensitivity C-reactive protein

MRI:

Magnetic resonance imaging

PAD:

Peripheral arterial disease

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2014;129:e28–292.

    Article  PubMed  Google Scholar 

  2. World Health Organization. Global Health Observatory. World Health Statistics 2014. Available at http://www.who.int/gho/publications/world_health_statistics/en/ Accessed January 6, 2015.

  3. Gupta A, Wang Y, Spertus JA, Geda M, Lorenze N, Nkonde-Price C, et al. Trends in acute myocardial infarction in young patients and differences by sex and race, 2001 to 2010. J Am Coll Cardiol. 2014;64(4):337–45. This study showed that acute myocardial infarction hospitalization rates in young adults have not declined over the past decade in the US.

    Article  PubMed  Google Scholar 

  4. Yusuf S, Hawken S, Ounpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364(9438):937–52.

    Article  PubMed  Google Scholar 

  5. Libby P. Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med. 2013;368(21):2004–13.

    Article  CAS  PubMed  Google Scholar 

  6. Erbel R, Budoff M. Improvement of cardiovascular risk prediction using coronary imaging: subclinical atherosclerosis: the memory of lifetime risk factor exposure. Eur Heart J. 2012;33(10):1201–133. This review addressed the role of subclinical atherosclerosis as the vascular memory of lifetime exposure to risk factors, and of CAC, an atherosclerosis-imaging technique, as a tool for a more accurate risk prediction.

    Article  PubMed  Google Scholar 

  7. McEvoy JW, Diamond GA, Detrano RC, Kaul S, Blaha MJ, Blumenthal RS, et al. Risk and the physics of clinical prediction. Am J Cardiol. 2014;113(8):1429–35. This review addressed the inherent limitations of the risk score-based approach for predicting an individual’s cardiovascular risk.

    Article  PubMed  Google Scholar 

  8. Akosah KO, Schaper A, Cogbill C, Schoenfeld P. Preventing myocardial infarction in the young adult in the first place: how do the national cholesterol education panel III guidelines perform? J Am Coll Cardiol. 2003;41:1475–9.

    Article  PubMed  Google Scholar 

  9. Lakoski SG, Greenland P, Wong ND, Schreiner PJ, Herrington DM, Kronmal RA, et al. Coronary artery calcium scores and risk for cardiovascular events in women classified as "low risk" based on Framingham risk score: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2007;167:2437–42.

    Article  PubMed  Google Scholar 

  10. Michos ED, Nasir K, Braunstein JB, Rumberger JA, Budoff MJ, Post WS, et al. Framingham risk equation underestimates subclinical atherosclerosis risk in asymptomatic women. Atherosclerosis. 2006;184:201–6.

    Article  CAS  PubMed  Google Scholar 

  11. Ford ES, Giles WH, Mokdad AH. The distribution of 10-year risk for coronary heart disease among US adults: findings from the national health and nutrition examination survey III. J Am Coll Cardiol. 2004;43(10):1791–6.

    Article  PubMed  Google Scholar 

  12. Ford ES, Will JC, Mercado CI, Loustalot F. Trends in predicted risk for atherosclerotic cardiovascular disease using the pooled cohort risk equations among US adults from 1999 to 2012. JAMA Intern Med. 2014. doi: 10.1001/jamainternmed.2014.6403.

  13. Pencina MJ, Navar-Boggan AM, D’Agostino Sr RB, Williams K, Neely B, Sniderman AD, et al. Application of new cholesterol guidelines to a population-based sample. N Engl J Med. 2014;370(15):1422–31. This study used NHANES to calculate the number of US adults who would be considered eligible for statin therapy according to the 2013 ACC/AHA guidelines.

    Article  CAS  PubMed  Google Scholar 

  14. Goff Jr DC, Lloyd-Jones DM, Bennett G, Coady S, D’Agostino Sr RB, Gibbons R, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2935–59. The 2013 ACC/AHA cardiovascular risk assessment guidelines.

    Article  PubMed  Google Scholar 

  15. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(25 Pt B):2889–934. The 2013 ACC/AHA treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk guidelines.

    Article  PubMed  Google Scholar 

  16. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2960–84.

    Article  PubMed  Google Scholar 

  17. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. J Am Coll Cardiol. 2014;63:2985–3023.

    Article  PubMed  Google Scholar 

  18. Ridker PM, Cook NR. Statins: new American guidelines for prevention of cardiovascular disease. Lancet. 2013;382(9907):1762–5. This study found that the implementation of the 2013 ACC/AHA risk assessment guidelines in modern cohorts resulted in a risk overestimation of up to 150%.

    Article  PubMed  Google Scholar 

  19. Goff DC, Lloyd-Jones DM, Bennett G, Gibbons R, Greenland P, Lackland DT, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk. Risk Assessment Full Work Group Report. Available at: http://circ.ahajournals.org/content/early/2013/11/11/01.cir.0000437741.48606.98/suppl/DC1

  20. Cook NR, Ridker PM. Further insight into the cardiovascular risk calculator: the roles of statins, revascularizations, and underascertainment in the Women’s health study. JAMA Intern Med. 2014;174(12):1964–71. This study found that differences in statin use, revascularizations or underascertainment of events did not fully explain the discrepancy between observed rates of ASCVD in the WHS and those predicted by the 2013 ACC/AHA risk estimator.

    Article  PubMed  Google Scholar 

  21. Karmali KN, Goff Jr DC, Ning H, Lloyd-Jones DM. A systematic examination of the 2013 ACC/AHA pooled cohort risk assessment tool for atherosclerotic cardiovascular disease. J Am Coll Cardiol. 2014;64(10):959–68. This study addressed potential explanations for the risk overestimation resulting from the implementation of the 2013 ACC/AHA risk estimator in modern cohorts.

    Article  PubMed  Google Scholar 

  22. Miedema MD, Lopez FL, Blaha MJ, Virani SS, Coresh J, Ballantyne CM, et al. Eligibility for statin therapy according to new cholesterol guidelines and prevalent Use of medication to lower lipid levels in an older US Cohort: the Atherosclerosis Risk in Communities Study Cohort. JAMA Intern Med. 2015;175(1):138–40.

    Article  PubMed  Google Scholar 

  23. Lloyd-Jones DM, Goff D, Stone NJ. Statins, risk assessment, and the new American prevention guidelines. Lancet. 2014;383(9917):600–2.

    Article  CAS  PubMed  Google Scholar 

  24. Martin SS, Blumenthal RS. Concepts and controversies: the 2013 American College of Cardiology/American Heart Association Risk Assessment and Cholesterol Treatment Guidelines. Ann Intern Med. 2014;160(5):356–8. This editorial comment discussed the key controversies of the 2013 ACC/AHA risk assessment guidelines, and provided recommendations regarding the key features that should be addressed in the patient-physician discussion.

    Article  PubMed  Google Scholar 

  25. Blaha MJ, Dardari ZA, Blumenthal RS, Martin SS, Nasir K, Al-Mallah MH. The new "intermediate risk" group: a comparative analysis of the new 2013 ACC/AHA risk assessment guidelines versus prior guidelines in men. Atherosclerosis. 2014;237(1):1–4. This study showed how, compared with previous versions, the 2013 ACC/AHA guidelines produce an abridged, more temporary and lower risk "intermediate risk" group, and addressed its implications regarding the use of personalized risk assessment tools.

    Article  CAS  PubMed  Google Scholar 

  26. 27th Bethesda Conference. Matching the intensity of risk factor management with the hazard for coronary disease events. September 14-15, 1995. J Am Coll Cardiol. 1996;27:957–1047.

  27. Dhiman P, Kai J, Horsfall L, Walters K, Qureshi N. Availability and quality of coronary heart disease family history in primary care medical records: implications for cardiovascular risk assessment. PLoS One. 2014;9:e81998.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Anderson TJ, Grégoire J, Hegele RA, Couture P, Mancini GB, McPherson R, et al. 2012 update of the Canadian cardiovascular society guidelines for the diagnosis and treatment of dyslipidemia for the prevention of cardiovascular disease in the adult. Can J Cardiol. 2013;29:151–67.

    Article  PubMed  Google Scholar 

  29. Jacobson TA. Lipoprotein(a), cardiovascular disease, and contemporary management. Mayo Clin Proc. 2013;88:1294–311.

    Article  CAS  PubMed  Google Scholar 

  30. Williamson C, Jeemon P, Hastie CE, McCallum L, Muir S, Dawson J, et al. Family history of premature cardiovascular disease: blood pressure control and long-term mortality outcomes in hypertensive patients. Eur Heart J. 2014;35:563–70.

    Article  PubMed  Google Scholar 

  31. Pandey AK, Pandey S, Blaha MJ, Agatston A, Feldman T, Ozner M, et al. Family history of coronary heart disease and markers of subclinical cardiovascular disease: where do we stand? Atherosclerosis. 2013;228:285–94.

    Article  CAS  PubMed  Google Scholar 

  32. Nasir K, Budoff MJ, Wong ND, Scheuner M, Herrington D, Arnett DK, et al. Family history of premature coronary heart disease and coronary artery calcification: multi-ethnic study of atherosclerosis (MESA). Circulation. 2007;116:619–26.

    Article  PubMed  Google Scholar 

  33. Wilkins JT, Gidding S, Liu K, Ning H, Polak JF, Lloyd-Jones DM, et al. Associations between a parental history of premature cardiovascular disease and carotid intima-media thickness: the coronary artery risk development in young adults (CARDIA) study. Eur J Prev Cardiol. 2014;21:601–7.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Pandey AK, Blaha MJ, Sharma K, Rivera J, Budoff MJ, Blankstein R, et al. Family history of coronary heart disease and the incidence and progression of coronary artery calcification: multi-ethnic study of atherosclerosis (MESA). Atherosclerosis. 2014;232:369–76.

    Article  CAS  PubMed  Google Scholar 

  35. Cohen R, Budoff M, McClelland RL, Sillau S, Burke G, Blaha M, et al. Significance of a positive family history for coronary heart disease in patients with a zero coronary artery calcium score (from the multi-ethnic study of atherosclerosis). Am J Cardiol. 2014;114:1210–4.

    Article  PubMed  Google Scholar 

  36. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte Jr M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15(4):827–32.

    Article  CAS  PubMed  Google Scholar 

  37. Rumberger JA, Simons DB, Fitzpatrick LA, Sheedy PF, Schwartz RS. Coronary artery calcium area by electron beam computed tomography and coronary atherosclerotic plaque area: a histopathologic correlative study. Circulation. 1995;92(8):2157–62.

    Article  CAS  PubMed  Google Scholar 

  38. Guerci AD, Spadaro LA, Popma JJ, Goodman KJ, Brundage BH, Budoff M, et al. Relation of coronary calcium score by electron beam computed tomography to arteriographic findings in asymptomatic and symptomatic adults. Am J Cardiol. 1997;79(2):128–33.

    Article  CAS  PubMed  Google Scholar 

  39. Tinana A, Mintz GS, Weissman NJ. Volumetric intravascular ultrasound quantification of the amount of atherosclerosis and calcium in nonstenotic arterial segments. Am J Cardiol. 2002;89(6):757–60.

    Article  PubMed  Google Scholar 

  40. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, et al. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358(13):1336–45.

    Article  CAS  PubMed  Google Scholar 

  41. Greenland P. More evidence for coronary calcium as a measure of cardiovascular risk: has anything changed? JAMA. 2014;311(3):247–8.

    Article  CAS  PubMed  Google Scholar 

  42. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, et al. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308(8):788–95. This study found that combining CAC with the FRS risk factors provided a superior discrimination and risk reclassification than adding CIMT, ABI, brachial flow-mediated dilation, hsCRP or family history of coronary heart disease.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Kavousi M, Elias-Smale S, Rutten JH, Leening MJ, Vliegenthart R, Verwoert GC, et al. Evaluation of newer risk markers for coronary heart disease risk classification: a cohort study. Ann Intern Med. 2012;156(6):438–44. This study found that among 12 novel risk assessment tools including atherosclerosis-imaging techniques, serum biomarkers and other tests, adding CAC to the FRS risk factors resulted in the greatest improvement in risk prediction.

    Article  PubMed  Google Scholar 

  44. Rana JS, Gransar H, Wong ND, Shaw L, Pencina M, Nasir K, et al. Comparative value of coronary artery calcium and multiple blood biomarkers for prognostication of cardiovascular events. Am J Cardiol. 2012;109(10):1449–53. This study found that the addition of CAC but not biomarkers (neither individually nor combined in a multiple biomarker panel) substantially improved risk reclassification for future CVD events beyond traditional risk factors.

    Article  CAS  PubMed  Google Scholar 

  45. Erbel R, Möhlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, et al. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf recall study. J Am Coll Cardiol. 2010;56(17):1397–406. This study showed that in subjects considered at intermediate risk by the FRS, CAC scoring resulted in a high risk reclassification rate.

    Article  PubMed  Google Scholar 

  46. Peters SAE, den Ruijter HM, Bots ML, Moons KG. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart. 2012;98(3):177–84. This systematic review provided high-quality evidence regarding the added value of CAC as a tool for further cardiovascular risk assessment beyond traditional risk factors.

    Article  PubMed  Google Scholar 

  47. Silverman MG, Blaha MJ, Krumholz HM, Budoff MJ, Blankstein R, Sibley CT, et al. Impact of coronary artery calcium on coronary heart disease events in individuals at the extremes of traditional risk factor burden: the multi-ethnic study of atherosclerosis. Eur Heart J. 2014;35(33):2232–41. This study showed how among individuals without traditional risk factors, a high CAC score is associated with high event rates, whereas the absence of CAC even among subjects with a high traditional risk factor burden is associated with low event rates.

    Article  CAS  PubMed  Google Scholar 

  48. Martin SS, Blaha MJ, Blankstein R, Agatston A, Rivera JJ, Virani SS, et al. Dyslipidemia, coronary artery calcium, and incident atherosclerotic cardiovascular disease: implications for statin therapy from the multi-ethnic study of atherosclerosis. Circulation. 2014;129(1):77–86. This study found that among individuals without lipid abnormalities or with low levels of LDL-C, a high CAC score is associated with high CVD event rates, whereas CAC = 0 is associated with low event rates even among subjects with several lipid abnormalities or high levels of LDL-C.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Gibson AO, Blaha MJ, Arnan MK, Sacco RL, Szklo M, Herrington DM, et al. Coronary artery calcium and incident cerebrovascular events in an asymptomatic cohort: the MESA study. JACC Cardiovasc Imaging. 2014;7(11):1108–15.

    Article  PubMed  Google Scholar 

  50. Pletcher MJ, Pignone M, Earnshaw S, McDade C, Phillips KA, Auer R, et al. Using the coronary artery calcium score to guide statin therapy: a cost-effectiveness analysis. Circ Cardiovasc Qual Outcomes. 2014;7(2):276–84. This study found CAC testing to be a cost-effective strategy for cardiovascular risk assessment and statin therapy allocation in intermediate risk patients.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Miedema MD, Duprez DA, Misialek JR, Blaha MJ, Nasir K, Silverman MG, et al. Use of coronary artery calcium testing to guide aspirin utilization for primary prevention: estimates from the multi-ethnic study of atherosclerosis. Circ Cardiovasc Qual Outcomes. 2014;7(3):453–60.

    Article  PubMed  Google Scholar 

  52. Bittencourt MS, Blaha MJ, Blankstein R, Budoff M, Vargas JD, Blumenthal RS, et al. Polypill therapy, subclinical atherosclerosis, and cardiovascular events-implications for the use of preventive pharmacotherapy: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol. 2014;63(5):434–43.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Sarwar A, Shaw LJ, Shapiro MD, Blankstein R, Hoffman U, Cury RC, et al. Diagnostic and prognostic value of absence of coronary artery calcification. JACC Cardiovasc Imaging. 2009;2(6):675–88.

    Article  PubMed  Google Scholar 

  54. Brodov Y, Gransar H, Rozanski A, Hayes SW, Friedman JD, Thomson LE, et al. Extensive thoracic aortic calcification is an independent predictor of development of coronary artery calcium among individuals with coronary artery calcium score of zero. Atherosclerosis. 2015;238(1):4–8.

    Article  CAS  PubMed  Google Scholar 

  55. Al Rifai M, Cainzos-Achirica M, Blaha MJ. Establishing the warranty of a coronary artery calcium score of zero. Atherosclerosis. 2015;238(1):1–3.

    Article  CAS  PubMed  Google Scholar 

  56. Silverman MG, Harkness JR, Blankstein R, Budoff MJ, Agatston AS, Carr JJ, et al. Baseline subclinical atherosclerosis burden and distribution are associated with frequency and mode of future coronary revascularization: multi-ethnic study of atherosclerosis. JACC Cardiovasc Imaging. 2014;7(5):476–86. This study showed that regional distribution of CAC predicted the need for coronary revascularization independently of baseline CAC burden.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Criqui MH, Denenberg JO, Ix JH, McClelland RL, Wassel CL, Rifkin DE, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311(3):271–8. This study found CAC density to be significantly and inversely associated with CHD and CVD risk, at any level of CAC volume.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. McEvoy JW, Blaha MJ. Coronary artery calcium testing: exploring the need for a randomized trial. Circ Cardiovasc Imaging. 2014;7(4):578–80.

    Article  PubMed  Google Scholar 

  59. Cho I, Suh JW, Chang HJ, Kim KI, Jeon EJ, Choi SI, et al. Prevalence and prognostic implication of non-calcified plaque in asymptomatic population with coronary artery calcium score of zero. Korean Circ J. 2013;43(3):154–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Shreibati JB, Baker LC, McConnell MV, Hlatky MA. Outcomes after coronary artery calcium and other cardiovascular biomarker testing among asymptomatic medicare beneficiaries. Circ Cardiovasc Imaging. 2014;7(4):655–62. This study found, among asymptomatic Medicare beneficiaries, CAC testing to be associated with increased use of cardiac tests and procedures, and with higher spending, as well as with improved clinical outcomes, compared with hs-CRP testing.

    Article  PubMed  Google Scholar 

  61. Pepys MB, Hirschfield GM. C-reactive protein: a critical update. J Clin Invest. 2003;111:1805–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kuller LH, Tracy RP, Shaten J, Meilahn EN. Relation of C-reactive protein and coronary heart disease in the MRFIT nested case-control study multiple risk factor intervention trial. Am J Epidemiol. 1996;144:537–47.

    Article  CAS  PubMed  Google Scholar 

  63. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH. Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med. 1997;336:973–9.

    Article  CAS  PubMed  Google Scholar 

  64. Amrock SM, Weitzman M. Effect of increased leptin and C-reactive protein levels on mortality: results from the National Health and Nutrition Examination Survey. Atherosclerosis. 2014;236(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  65. Ridker PM, Danielson E, Fonseca FA, Genest J, Gotto Jr AM, Kastelein JJ, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359(21):2195–207.

    Article  CAS  PubMed  Google Scholar 

  66. Yousuf O, Mohanty BD, Martin SS, Joshi PH, Blaha MJ, Nasir K, et al. High-sensitivity C-reactive protein and cardiovascular disease: a resolute belief or an elusive link? J Am Coll Cardiol. 2013;62(5):397–408. This review found that currently available evidence does not support the use of hsCRP neither as a tool for routine cardiovascular risk assessment nor for the allocation of statin therapy in clinical practice.

    Article  CAS  PubMed  Google Scholar 

  67. Blaha MJ, Budoff MJ, DeFilippis AP, Blankstein R, Rivera JJ, Agatston A, et al. Associations between C-reactive protein, coronary artery calcium, and cardiovascular events: implications for the JUPITER population from MESA, a population-based cohort study. Lancet. 2011;378(9792):684–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367(14):1310–20.

    Article  PubMed  Google Scholar 

  69. Bower JK, Lazo M, Juraschek SP, Selvin E. Within-person variability in high-sensitivity C-reactive protein. Arch Intern Med. 2012;172(19):1519–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Anderson TJ, Gerhard MD, Meredith IT, Charbonneau F, Delagrange D, Creager MA, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol. 1995;75(6):71B–4.

    Article  CAS  PubMed  Google Scholar 

  71. Xu D, Zou L, Xing Y, Hou L, Wei Y, Zhang J, et al. Diagnostic value of ankle-brachial index in peripheral arterial disease: a meta-analysis. Can J Cardiol. 2013;29(4):492–8.

    Article  PubMed  Google Scholar 

  72. Resnick HE, Lindsay RS, McDermott MM, Devereux RB, Jones KL, Fabsitz RR, et al. Relationship of high and low ankle brachial index to all-cause and cardiovascular disease mortality: the strong heart study. Circulation. 2004;109(6):733–9.

    Article  PubMed  Google Scholar 

  73. Fan H, Hu X, Yu W, Cao H, Wang J, Li J, et al. Low ankle-brachial index and risk of stroke. Atherosclerosis. 2013;229(2):317–23.

    Article  CAS  PubMed  Google Scholar 

  74. Doobay AV, Anand SS. Sensitivity and specificity of the ankle-brachial index to predict future cardiovascular outcomes: a systematic review. Arterioscler, Thromb, Vasc Biol. 2005;25(7):1463–9.

    Article  CAS  Google Scholar 

  75. Pande RL, Perlstein TS, Beckman JA, Creager MA. Secondary prevention and mortality in peripheral artery disease: National Health and Nutrition Examination Study, 1999 to 2004. Circulation. 2011;124:17–23.

    Article  PubMed Central  PubMed  Google Scholar 

  76. Lin JS, Olson CM, Johnson ES, Whitlock EP. The ankle-brachial index for peripheral artery disease screening and cardiovascular disease prediction among asymptomatic adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2013;159(5):333–41. This systematic review found that currently available evidence is insufficient to assess the balance of harms and benefits of CVD risk assessment using the ABI.

    Article  PubMed  Google Scholar 

  77. Moyer VA. US Preventive Services Task Force Screening for peripheral artery disease and cardiovascular disease risk assessment with the ankle-brachial index in adults: US Preventive Services Task Force recommendation statement. Ann Intern Med. 2013;159:342–8.

    Article  PubMed  Google Scholar 

  78. Davies JH, Kenkre J, Williams EM. Current utility of the ankle-brachial index (ABI) in general practice: implications for its use in cardiovascular disease screening. BMC Fam Pract. 2014;15:69.

    Article  PubMed Central  PubMed  Google Scholar 

  79. Lorenz MW, Markus HS, Bots ML, Rosvall M, Sitzer M. Prediction of clinical cardiovascular events with carotid intima-media thickness: a systematic review and meta-analysis. Circulation. 2007;115:459–67.

    Article  PubMed  Google Scholar 

  80. Baldassarre D, Veglia F, Hamsten A, Humphries SE, Rauramaa R, de Faire U, et al. Progression of carotid intima-media thickness as predictor of vascular events: results from the IMPROVE study. Arterioscler, Thromb, Vasc Biol. 2013;33(9):2273–9.

    Article  CAS  Google Scholar 

  81. Folsom AR, Kronmal RA, Detrano RC, O’Leary DH, Bild DE, Bluemke DA, et al. Coronary artery calcification compared with carotid intima-media thickness in the prediction of cardiovascular disease incidence: the Multi-Ethnic Study of Atherosclerosis (MESA). Arch Intern Med. 2008;168(12):1333–9.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Polak JF, Pencina MJ, Pencina KM, O’Donnell CJ, Wolf PA, D’Agostino Sr RB. Carotid-wall intima-media thickness and cardiovascular events. N Engl J Med. 2011;365(3):213–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Den Ruijter HM, Peters SA, Anderson TJ, Britton AR, Dekker JM, Eijkemans MJ, et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012;308(8):796–803. This meta-analysis found that the addition of common CIMT measurements to the FRS resulted in a modest improvement in CVD risk prediction, unlikely to have clinical relevance.

    Article  Google Scholar 

  84. Zavodni AE, Wasserman BA, McClelland RL, Gomes AS, Folsom AR, Polak JF, et al. Carotid artery plaque morphology and composition in relation to incident cardiovascular events: the Multi-Ethnic Study of Atherosclerosis (MESA). Radiology. 2014;271(2):381–9. This study found carotid plaque morphology, composition and remodeling (assessed using MRI) to improve cardiovascular risk predictions when added to traditional risk factors.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Belcaro G, Nicolaides AN, Ramaswami G, Cesarone MR, De Sanctis M, Incandela L, et al. Carotid and femoral ultrasound morphology screening and cardiovascular events in low risk subjects: a 10-year follow-up study (the CAFES-CAVE study(1)). Atherosclerosis. 2001;156:379–87.

    Article  CAS  PubMed  Google Scholar 

  86. Irie Y, Katakami N, Kaneto H, Takahara M, Nishio M, Kasami R, et al. The utility of ultrasonic tissue characterization of carotid plaque in the prediction of cardiovascular events in diabetic patients. Atherosclerosis. 2013;230(2):399–405.

    Article  CAS  PubMed  Google Scholar 

  87. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, et al. Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr. 2008;21(2):93–111.

    Article  PubMed  Google Scholar 

  88. Gardin JM, Bartz TM, Polak JF, O’Leary DH, Wong ND. What do carotid intima-media thickness and plaque add to the prediction of stroke and cardiovascular disease risk in older adults? The cardiovascular health study. J Am Soc Echocardiogr. 2014;27(9):998–1005.

    Article  PubMed  Google Scholar 

  89. Greenland P, Alpert JS, Beller GA, Benjamin EJ, Budoff MJ, Fayad ZA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56(25):e50–103.

    Article  PubMed  Google Scholar 

  90. Perk J, De Backer G, Gohlke H, Graham I, Reiner Z, Verschuren M, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). Eur Heart J. 2012;33(13):1635–701.

    Article  CAS  PubMed  Google Scholar 

  91. Muhlestein JB, Lappé DL, Lima JA, Rosen BD, May HT, Knight S, et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA. 2014;312(21):2234–43.

    Article  CAS  PubMed  Google Scholar 

  92. Shechter M, Issachar A, Marai I, Koren-Morag N, Freinark D, Shahar Y, et al. Long-term association of brachial artery flow-mediated vasodilation and cardiovascular events in middle-aged subjects with no apparent heart disease. Int J Cardiol. 2009;134(1):52–8.

    Article  PubMed  Google Scholar 

  93. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol. 2010;55(13):1318–27.

    Article  PubMed  Google Scholar 

  94. Sniderman AD, Islam S, Yusuf S, McQueen MJ. Discordance analysis of apolipoprotein B and non-high density lipoprotein cholesterol as markers of cardiovascular risk in the INTERHEART study. Atherosclerosis. 2012;225(2):444–9.

    Article  CAS  PubMed  Google Scholar 

  95. Mora S, Buring JE, Ridker PM. Discordance of low-density lipoprotein (LDL) cholesterol with alternative LDL-related measures and future coronary events. Circulation. 2014;129(5):553–61. This study found that discordance in lipid levels is a common phenomenon which may result in risk under- or overestimation.

    Article  CAS  PubMed  Google Scholar 

  96. Martin SS, Michos ED. Are we moving towards concordance on the principle that lipid discordance matters? Circulation. 2014;129(5):539–41.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Tonelli M, Muntner P, Lloyd A, Manns BJ, Klarenbach S, Pannu N, et al. Risk of coronary events in people with chronic kidney disease compared with those with diabetes: a population-level cohort study. Lancet. 2012;380(9844):807–14.

    Article  PubMed  Google Scholar 

  98. Foster MC, Rawlings AM, Marrett E, Neff D, Grams ME, Kasiske BL, et al. Potential effects of reclassifying CKD as a coronary heart disease risk equivalent in the US population. Am J Kidney Dis. 2014;63(5):753–60.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Baigent C, Landray MJ, Reith C, Emberson J, Wheeler DC, Tomson C, et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet. 2011;377(9784):2181–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Blaha MJ, Feldman DI, Nasir K. Coronary artery calcium and physical fitness—the two best predictors of long-term survival. Atherosclerosis. 2014;234(1):93–4. This editorial comment addressed the potential value of cardiorespiratory fitness measurements in risk prediction beyond the information provided by CAC scoring.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MC-A was funded by a research grant from the Spanish Society of Cardiology. SSM is supported by the Pollin Cardiovascular Prevention Fellowship, Marie-Josée and Henry R Kravis endowed fellowship, and a National Institutes of Health training grant (T32HL07024). RSB is supported by the Kenneth Jay Pollin Professorship in Cardiology.

Compliance with Ethics Guidelines

Conflict of Interest

Michael Blaha served on an Advisory Board for Pfizer and Luitpold Pharmaceuticals and received grant support from the FDA, all outside of the scope of the present work. Roger Blumenthal, Miguel Cainzos-Achirica and Kieran Eissler have no relevant disclosures to report. Seth Martin is listed as a co-inventor on a pending patent filed by Johns Hopkins University for a method of low-density lipoprotein cholesterol estimation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seth S. Martin.

Additional information

This article is part of the Topical Collection on Novel and Emerging Risk Factors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cainzos-Achirica, M., Eissler, K., Blaha, M.J. et al. Tools for Cardiovascular Risk Assessment in Clinical Practice. Curr Cardiovasc Risk Rep 9, 28 (2015). https://doi.org/10.1007/s12170-015-0455-4

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12170-015-0455-4

Keywords

Navigation