Skip to main content

Advertisement

Log in

Cardiovascular Disease Risk Assessment: Review of Established and Newer Modalities

  • Prevention (L Sperling and D Gaita, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Cardiovascular disease (CVD) risk assessment has changed substantially in recent years. Statins are recommended for a larger proportion of Americans based on a recently recommended CVD global risk calculator derived from studies of multiple large, diverse, community-based cohorts. Recent research shows that patients that are intermediate risk for CVD events may benefit from net reclassification of risk based on circulatory biomarkers like c-reactive protein, interleukin-6, lipoprotein(a), and lipoprotein-associated phospholipase A2. In addition, multiple imaging biomarker modalities, including coronary artery calcium and carotid intima-media thickness, may play an important role in further risk stratification for patients in the later stages of CVD development. The data obtained from these markers could play an important role for deciding how aggressive a physician should be with pharmacological therapy. Here, we discuss many of the current recommendations of CVD risk assessment including those included and excluded from recent guidelines, while addressing the most recent data supporting renewed and newer modalities for CVD risk assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation. 2015;131:e29–322.

    Article  PubMed  Google Scholar 

  2. Goff Jr DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2935–59. Most recent widely publicized guidelines by the ACC/AHA describing the components for the 10 year and lifetime risk for ASCVD.

    Article  PubMed  Google Scholar 

  3. Greenland P, Alpert JS, Beller GA, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2010;56:e50–103.

    Article  PubMed  Google Scholar 

  4. Marma AK, Lloyd-Jones DM. Systematic examination of the updated Framingham heart study general cardiovascular risk profile. Circulation. 2009;120:384–90.

    Article  PubMed  Google Scholar 

  5. Kashani M, Eliasson A, Vernalis M, Costa L, Terhaar M. Improving assessment of cardiovascular disease risk by using family history: an integrative literature review. J Cardiovasc Nurs. 2013;28:E18–27.

    Article  PubMed  Google Scholar 

  6. Williams RR, Hunt SC, Heiss G, et al. Usefulness of cardiovascular family history data for population-based preventive medicine and medical research (the Health Family Tree Study and the NHLBI Family Heart Study). Am J Cardiol. 2001;87:129–35.

    Article  CAS  PubMed  Google Scholar 

  7. Schnell-Inderst P, Schwarzer R, Gohler A, et al. Prognostic value, clinical effectiveness, and cost-effectiveness of high-sensitivity c-reactive protein as a marker for major cardiac events in asymptomatic individuals: a health technology assessment report. Int J Technol Assess Health Care. 2010;26:30–9.

    Article  PubMed  Google Scholar 

  8. Peters SA, den Ruijter HM, Bots ML, Moons KG. Improvements in risk stratification for the occurrence of cardiovascular disease by imaging subclinical atherosclerosis: a systematic review. Heart. 2012;98:177–84.

    Article  PubMed  Google Scholar 

  9. Kaptoge S, Di Angelantonio E, Lowe G, et al. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet. 2010;375:132–40.

    Article  PubMed  Google Scholar 

  10. Pearson TA, Mensah GA, Alexander RW, et al. Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation. 2003;107:499–511.

    Article  PubMed  Google Scholar 

  11. Everett BM, Pradhan AD, Solomon DH, et al. Rationale and design of the Cardiovascular Inflammation Reduction Trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J. 2013;166:199–207. e15.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sniderman AD, Williams K, Contois JH, et al. A meta-analysis of low-density lipoprotein cholesterol, non-high-density lipoprotein cholesterol, and apolipoprotein B as markers of cardiovascular risk. Circ Cardiovasc Qual Outcomes. 2011;4:337–45.

    Article  PubMed  Google Scholar 

  13. Fowkes FG, Murray GD, Butcher I, et al. Ankle brachial index combined with Framingham Risk Score to predict cardiovascular events and mortality: a meta-analysis. JAMA. 2008;300:197–208.

    Article  CAS  PubMed  Google Scholar 

  14. Lin JS, Olson CM, Johnson ES, Whitlock EP. The ankle-brachial index for peripheral artery disease screening and cardiovascular disease prediction among asymptomatic adults: a systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med. 2013;159:333–41.

    Article  PubMed  Google Scholar 

  15. Hlatky MA, Greenland P, Arnett DK, et al. Criteria for evaluation of novel markers of cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119:2408–16.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr Rev. 2007;65:S140–6.

    Article  PubMed  Google Scholar 

  17. Danesh J, Kaptoge S, Mann AG, et al. Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med. 2008;5, e78.

    Article  PubMed Central  PubMed  Google Scholar 

  18. The interleukin-6 receptor as a target for prevention of coronary heart disease: a Mendelian randomisation analysis. Lancet 2012;379:1214–24.

  19. Kaptoge S, Seshasai SR, Gao P, et al. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J. 2014;35:578–89.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Mannheim D, Herrmann J, Versari D, et al. Enhanced expression of Lp-PLA2 and lysophosphatidylcholine in symptomatic carotid atherosclerotic plaques. Stroke. 2008;39:1448–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Kolodgie FD, Burke AP, Skorija KS, et al. Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol. 2006;26:2523–9.

    Article  CAS  PubMed  Google Scholar 

  22. Corson MA, Jones PH, Davidson MH. Review of the evidence for the clinical utility of lipoprotein-associated phospholipase A2 as a cardiovascular risk marker. Am J Cardiol. 2008;101:41F–50.

    Article  CAS  PubMed  Google Scholar 

  23. Thompson A, Gao P, Orfei L, et al. Lipoprotein-associated phospholipase A(2) and risk of coronary disease, stroke, and mortality: collaborative analysis of 32 prospective studies. Lancet. 2010;375:1536–44.

    Article  CAS  PubMed  Google Scholar 

  24. Ridker PM, Buring JE, Rifai N, Cook NR. Development and validation of improved algorithms for the assessment of global cardiovascular risk in women: the Reynolds Risk Score. JAMA. 2007;297:611–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ballantyne CM, Hoogeveen RC, Bang H, et al. Lipoprotein-associated phospholipase A2, high-sensitivity c-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2004;109:837–42.

    Article  CAS  PubMed  Google Scholar 

  26. Nambi V, Hoogeveen RC, Chambless L, et al. Lipoprotein-associated phospholipase A2 and high-sensitivity c-reactive protein improve the stratification of ischemic stroke risk in the Atherosclerosis Risk in Communities (ARIC) study. Stroke. 2009;40:376–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. White HD, Held C, Stewart R, et al. Darapladib for preventing ischemic events in stable coronary heart disease. N Engl J Med. 2014;370:1702–11. Randomized Clinical Trial showing darapladib, a selective oral inhibitor of lipoprotein-associated phospholipase A2, did not reduce the risk of the end points of cardiovascular death, myocardial infarction, or stroke.

    Article  CAS  PubMed  Google Scholar 

  28. Munzel T, Gori T. Lipoprotein-associated phospholipase A(2), a marker of vascular inflammation and systemic vulnerability. Eur Heart J. 2009;30:2829–31.

    Article  PubMed  Google Scholar 

  29. Garg PK, McClelland RL, Jenny NS, et al. Lipoprotein-associated phospholipase A2 and risk of incident cardiovascular disease in a multi-ethnic cohort: the multi ethnic study of atherosclerosis. Atherosclerosis. 2015;241:176–82. A study using a large population based multi-ethnic cohort that showed lipoprotein-associated phospholipase A2 remained positively associated with CVD risk despite the presence of other CVD.

    Article  CAS  PubMed  Google Scholar 

  30. Clarke R, Peden JF, Hopewell JC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361:2518–28.

    Article  CAS  PubMed  Google Scholar 

  31. Erqou S, Kaptoge S, Perry PL, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. JAMA. 2009;302:412–23.

    Article  CAS  PubMed  Google Scholar 

  32. Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA. Role of phospholipid oxidation products in atherosclerosis. Circ Res. 2012;111:778–99.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Di Angelantonio E, Gao P, Pennells L, et al. Lipid-related markers and cardiovascular disease prediction. JAMA. 2012;307:2499–506.

    PubMed  Google Scholar 

  34. Willeit P, Kiechl S, Kronenberg F, et al. Discrimination and net reclassification of cardiovascular risk with lipoprotein(a): prospective 15-year outcomes in the Bruneck Study. J Am Coll Cardiol. 2014;64:851–60. Study showing that Lp(a) predicts 15-year CVD outcomes and improves CVR risk prediction particularly in those previously identified to be in the intermediate-risk group for CVD events.

    Article  PubMed  Google Scholar 

  35. Cao JJ, Biggs ML, Barzilay J, et al. Cardiovascular and mortality risk prediction and stratification using urinary albumin excretion in older adults ages 68–102: the Cardiovascular Health Study. Atherosclerosis. 2008;197:806–13.

    Article  CAS  PubMed  Google Scholar 

  36. Hillege HL, Fidler V, Diercks GF, et al. Urinary albumin excretion predicts cardiovascular and noncardiovascular mortality in general population. Circulation. 2002;106:1777–82.

    Article  CAS  PubMed  Google Scholar 

  37. Yuyun MF, Khaw KT, Luben R, et al. A prospective study of microalbuminuria and incident coronary heart disease and its prognostic significance in a British population: the EPIC-Norfolk study. Am J Epidemiol. 2004;159:284–93.

    Article  PubMed  Google Scholar 

  38. Ko GT, So WY, Chan NN, et al. Prediction of cardiovascular and total mortality in Chinese type 2 diabetic patients by the WHO definition for the metabolic syndrome. Diabetes Obes Metab. 2006;8:94–104.

    Article  PubMed  Google Scholar 

  39. Jassal SK, Langenberg C, von Muhlen D, Bergstrom J, Barrett-Connor E. Usefulness of microalbuminuria versus the metabolic syndrome as a predictor of cardiovascular disease in women and men >40 years of age (from the Rancho Bernardo Study). Am J Cardiol. 2008;101:1275–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Gerstein HC, Mann JF, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA. 2001;286:421–6.

    Article  CAS  PubMed  Google Scholar 

  41. Thanikachalam M, Swaminathan A, Sunderarajan J, Harivanzan V, Thanikachalam S. Abstract 15897: microalbuminuria is associated with subclinical cardiovascular disease parameters independent of traditional risk factors in a large population based study. American Heart Association Scientific Sessions. Dallas, Texas: Circulation, 2013.

  42. Wachtell K, Ibsen H, Olsen MH, et al. Albuminuria and cardiovascular risk in hypertensive patients with left ventricular hypertrophy: the LIFE study. Ann Intern Med. 2003;139:901–6.

    Article  PubMed  Google Scholar 

  43. Rozanski A, Gransar H, Hayes SW, et al. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol. 2013;61:1054–65.

    Article  PubMed  Google Scholar 

  44. Ziadi MC, Dekemp RA, Williams KA, et al. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740–8.

    Article  PubMed  Google Scholar 

  45. Murthy VL, Naya M, Foster CR, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215–24.

    Article  PubMed Central  PubMed  Google Scholar 

  46. Young LH, Wackers FJ, Chyun DA, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301:1547–55.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bourque JM, Patel CA, Ali MM, Perez M, Watson DD, Beller GA. Prevalence and predictors of ischemia and outcomes in outpatients with diabetes mellitus referred for single-photon emission computed tomography myocardial perfusion imaging. Circ Cardiovasc Imaging. 2013;6:466–77.

    Article  PubMed Central  PubMed  Google Scholar 

  48. Murthy VL, Naya M, Foster CR, et al. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation. 2012;126:1858–68.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Schroeder S, Kopp AF, Baumbach A, et al. Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomography. J Am Coll Cardiol. 2001;37:1430–5.

    Article  CAS  PubMed  Google Scholar 

  50. Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47:1655–62.

    Article  PubMed  Google Scholar 

  51. Cordeiro MA, Lima JA. Atherosclerotic plaque characterization by multidetector row computed tomography angiography. J Am Coll Cardiol. 2006;47:C40–7.

    Article  PubMed  Google Scholar 

  52. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  53. Motoyama S, Kondo T, Anno H, et al. Atherosclerotic plaque characterization by 0.5-mm-slice multislice computed tomographic imaging. Circ J. 2007;71:363–6.

    Article  PubMed  Google Scholar 

  54. Motoyama S, Sarai M, Harigaya H, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  55. Kamimura M, Moroi M, Isobe M, Hiroe M. Role of coronary CT angiography in asymptomatic patients with type 2 diabetes mellitus. Int Heart J. 2012;53:23–8.

    Article  PubMed  Google Scholar 

  56. Min JK, Labounty TM, Gomez MJ, et al. Incremental prognostic value of coronary computed tomographic angiography over coronary artery calcium score for risk prediction of major adverse cardiac events in asymptomatic diabetic individuals. Atherosclerosis. 2014;232:298–304. Study showing that among asymptomatic patients with diabetes, coronary computed tomographic angiography was able to add incremental risk prediction and reclassification after adjustment for standard CAD risk factors including coronary artery calcium.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Zellweger MJ, Hachamovitch R, Kang X, et al. Prognostic relevance of symptoms versus objective evidence of coronary artery disease in diabetic patients. Eur Heart J. 2004;25:543–50.

    Article  PubMed  Google Scholar 

  58. Choi EK, Koo BK, Kim HS, et al. Prognostic significance of asymptomatic coronary artery disease in patients with diabetes and need for early revascularization therapy. Diabet Med. 2007;24:1003–11.

    Article  CAS  PubMed  Google Scholar 

  59. Scognamiglio R, Negut C, Ramondo A, Tiengo A, Avogaro A. Detection of coronary artery disease in asymptomatic patients with type 2 diabetes mellitus. J Am Coll Cardiol. 2006;47:65–71.

    Article  PubMed  Google Scholar 

  60. Wackers FJ, Young LH, Inzucchi SE, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27:1954–61.

    Article  PubMed  Google Scholar 

  61. Muhlestein JB, Lappe DL, Lima JA, et al. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the FACTOR-64 randomized clinical trial. JAMA. 2014;312:2234–43. Study showing that among asymptomatic patients with diabetes, use of coronary computed tomographic angiography did not reduce rates of all-cause mortality, nonfatal myocardial infarction, or unstable angina.

    Article  CAS  PubMed  Google Scholar 

  62. Perk J, De Backer G, Gohlke H, et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts). Eur Heart J. 2012;33:1635–701.

    Article  CAS  PubMed  Google Scholar 

  63. Den Ruijter HM, Peters SA, Anderson TJ, et al. Common carotid intima-media thickness measurements in cardiovascular risk prediction: a meta-analysis. JAMA. 2012;308:796–803.

    Article  Google Scholar 

  64. Nambi V, Chambless L, Folsom AR, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk: the ARIC (Atherosclerosis Risk in Communities) study. J Am Coll Cardiol. 2010;55:1600–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Polak JF, Szklo M, Kronmal RA, et al. The value of carotid artery plaque and intima-media thickness for incident cardiovascular disease: the multi-ethnic study of atherosclerosis. J Am Heart Assoc. 2013;2, e000087. A study using a large population based multi-ethnic cohort that showed ultrasound-derived plaque metrics independently predicted CVD events and improved net reclassification when added to Framingham risk factors.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Khot UN, Khot MB, Bajzer CT, et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA. 2003;290:898–904.

    Article  PubMed  Google Scholar 

  67. Greenland P, Knoll MD, Stamler J, et al. Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA. 2003;290:891–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan D. Wong PhD.

Ethics declarations

Conflict of Interest

David M. Tehrani and Nathan D. Wong each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehrani, D.M., Wong, N.D. Cardiovascular Disease Risk Assessment: Review of Established and Newer Modalities. Curr Treat Options Cardio Med 17, 57 (2015). https://doi.org/10.1007/s11936-015-0420-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-015-0420-z

Keywords

Navigation