Skip to main content
Log in

The Ups and Downs of Insulin Resistance and Type 2 Diabetes: Lessons from Genomic Analyses in Humans

  • Diabetes and Insulin Resistance (M Rutter, Section Editor)
  • Published:
Current Cardiovascular Risk Reports Aims and scope Submit manuscript

Abstract

We are in the midst of a worldwide epidemic of type 2 diabetes (T2D) and obesity. Understanding the mechanisms underlying these diseases is critical if we are to halt their progression and ultimately prevent their development. The advent and widespread implementation of microarray technology has allowed analysis of small samples of human skeletal muscle, adipose, liver, pancreas, and blood. While patterns differ in each tissue, several dominant themes have emerged from these studies, including altered expression of genes indicating increased inflammation and altered lipid and mitochondrial oxidative metabolism and insulin signaling in patients with T2D, and in some cases, in those at risk for disease. Unraveling which changes in gene expression are primary, and which are secondary to an insulin resistant or diabetes metabolic milieu, remains a scientific challenge but we are 1 step closer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Centers for Disease Control and Prevention USDoHaHS. National diabetes fact sheet. www.cdc.gov/diabetes. 2011.

  2. Boyle JP, Honeycutt AA, Narayan KM, et al. Projection of diabetes burden through 2050: impact of changing demography and disease prevalence in the U.S. Diabetes Care. 2001;24:1936–40.

    Article  PubMed  CAS  Google Scholar 

  3. World Health Organization. WHO. 2008.

  4. Tuomilehto J, Lindstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.

    Article  PubMed  CAS  Google Scholar 

  5. Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345:790–7.

    Article  PubMed  CAS  Google Scholar 

  6. Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  PubMed  CAS  Google Scholar 

  7. Wing RR, Lang W, Wadden TA, et al. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care. 2011;34:1481–6.

    Article  PubMed  CAS  Google Scholar 

  8. Saydah SH, Fradkin J, Cowie CC. Poor control of risk factors for vascular disease among adults with previously diagnosed diabetes. JAMA. 2004;291:335–42.

    Article  PubMed  CAS  Google Scholar 

  9. Tabak AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimaki M, Witte DR. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet. 2009;373:2215–21.

    Article  PubMed  CAS  Google Scholar 

  10. Billings LK, Florez JC. The genetics of type 2 diabetes: what have we learned from GWAS? Ann N Y Acad Sci. 2010;1212:59–77.

    Article  PubMed  CAS  Google Scholar 

  11. Doria A, Patti ME, Kahn CR. The emerging genetic architecture of type 2 diabetes. Cell Metab. 2008;8:186–200.

    Article  PubMed  CAS  Google Scholar 

  12. DeFronzo RA, Gunnarsson R, Bjorkman O, Olsson M, Wahren J. Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. J Clin Invest. 1985;76:149–55.

    Article  PubMed  CAS  Google Scholar 

  13. Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.

    Google Scholar 

  14. Eriksson J, Franssila-Kallunki A, Ekstrand A, et al. Early metabolic defects in persons at increased risk for non-insulin-dependent diabetes mellitus. N Engl J Med. 1989;321:337–43.

    Article  PubMed  CAS  Google Scholar 

  15. Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese caucasion first-degree relatives of patients with non-insulin-dependent diabetes mellitus. J Clin Invest. 1992;89:782–8.

    Article  PubMed  CAS  Google Scholar 

  16. Pratipanawatr W, Pratipanawatr T, Cusi K, et al. Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes. 2001;50:2572–8.

    Article  PubMed  CAS  Google Scholar 

  17. Alligier M, Meugnier E, Debard C, et al. Subcutaneous adipose tissue remodeling during the initial phase of weight gain induced by overfeeding in humans. J Clin Endocrinol Metab. 2012;97:E183–92.

    Article  PubMed  CAS  Google Scholar 

  18. Jacob S, Machann J, Rett K, et al. Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 1999;48:1113–9.

    Article  PubMed  CAS  Google Scholar 

  19. Malenfant P, Joanisse DR, Theriault R, Goodpaster BH, Kelley DE, Simoneau JA. Fat content in individual muscle fibers of lean and obese subjects. Int J Obes Relat Metab Disord. 2001;25:1316–21.

    Article  PubMed  CAS  Google Scholar 

  20. Dresner A, Laurent D, Marcucci M, et al. Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest. 1999;103:253–9.

    Article  PubMed  CAS  Google Scholar 

  21. Koves TR, Ussher JR, Noland RC, et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab. 2008;7:45–56.

    Article  PubMed  CAS  Google Scholar 

  22. Holland WL, Brozinick JT, Wang LP, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 2007;5:167–79.

    Article  PubMed  CAS  Google Scholar 

  23. O'Brien RM, Granner DK. Regulation of gene expression by insulin. Physiol Rev. 1996;76:1109–61.

    PubMed  Google Scholar 

  24. Hansen L, Gaster M, Oakeley EJ, et al. Expression profiling of insulin action in human myotubes: induction of inflammatory and pro-angiogenic pathways in relationship with glycogen synthesis and type 2 diabetes. Biochem Biophys Res Commun. 2004;323:685–95.

    Article  PubMed  CAS  Google Scholar 

  25. Clement K, Viguerie N, Poitou C, et al. Weight loss regulates inflammation-related genes in white adipose tissue of obese subjects. FASEB J. 2004;18:1657–69.

    Article  PubMed  CAS  Google Scholar 

  26. Wu X, Wang J, Cui X, et al. The effect of insulin on expression of genes and biochemical pathways in human skeletal muscle. Endocrine. 2007;31:5–17.

    Article  PubMed  CAS  Google Scholar 

  27. Coletta DK, Balas B, Chavez AO, et al. Effect of acute physiological hyperinsulinemia on gene expression in human skeletal muscle in vivo. Am J Physiol Endocrinol Metab. 2008;294:E910–7.

    Article  PubMed  CAS  Google Scholar 

  28. Granjon A, Gustin MP, Rieusset J, et al. The microRNA signature in response to insulin reveals its implication in the transcriptional action of insulin in human skeletal muscle and the role of a sterol regulatory element-binding protein-1c/myocyte enhancer factor 2C pathway. Diabetes. 2009;58:2555–64.

    Article  PubMed  CAS  Google Scholar 

  29. Rome S, Meugnier E, Lecomte V, et al. Microarray analysis of genes with impaired insulin regulation in the skeletal muscle of type 2 diabetic patients indicates the involvement of basic helix-loop-helix domain-containing, class B, 2 protein (BHLHB2). Diabetologia. 2009;52:1899–912.

    Article  PubMed  CAS  Google Scholar 

  30. Sreekumar R, Halvatsiotis P, Schimke JC, Nair KS. Gene expression profile in skeletal muscle of type 2 diabetes and the effect of insulin treatment. Diabetes. 2002;51:1913–20.

    Article  PubMed  CAS  Google Scholar 

  31. Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A. 2003;100:8466–71.

    Article  PubMed  CAS  Google Scholar 

  32. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34:267–73.

    Article  PubMed  CAS  Google Scholar 

  33. Mootha VK, Handschin C, Arlow D, et al. Erralpha and Gabpa/b specify PGC-1alpha-dependent oxidative phosphorylation gene expression that is altered in diabetic muscle. Proc Natl Acad Sci U S A. 2004;101:6570–5.

    Article  PubMed  CAS  Google Scholar 

  34. Bruce CR, Anderson MJ, Carey AL, et al. Muscle oxidative capacity is a better predictor of insulin sensitivity than lipid status. J Clin Endocrinol Metab. 2003;88:5444–51.

    Article  PubMed  CAS  Google Scholar 

  35. Ghosh S, Lertwattanarak R, Lefort N, et al. Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes. 2011;60:2051–60.

    Article  PubMed  CAS  Google Scholar 

  36. Alibegovic AC, Sonne MP, Hojbjerre L, et al. Insulin resistance induced by physical inactivity is associated with multiple transcriptional changes in skeletal muscle in young men. Am J Physiol Endocrinol Metab. 2010;299:E752–63.

    Article  PubMed  CAS  Google Scholar 

  37. Richardson DK, Kashyap S, Bajaj M, et al. Lipid infusion decreases the expression of nuclear encoded mitochondrial genes and increases expression of extracellular matrix genes in human skeletal muscle. J Biol Chem. 2004;280:10290–7.

    Article  PubMed  CAS  Google Scholar 

  38. Sparks LM, Xie H, Koza RA, et al. A high-fat diet coordinately downregulates genes required for mitochondrial oxidative phosphorylation in skeletal muscle. Diabetes. 2005;54:1926–33.

    Article  PubMed  CAS  Google Scholar 

  39. Wisloff U, Najjar SM, Ellingsen O, et al. Cardiovascular risk factors emerge after artificial selection for low aerobic capacity. Science. 2005;307:418–20.

    Article  PubMed  CAS  Google Scholar 

  40. Wright DC, Han DH, Garcia-Roves PM, Geiger PC, Jones TE, Holloszy JO. Exercise-induced mitochondrial biogenesis begins before the increase in muscle PGC-1alpha expression. J Biol Chem. 2006;282:194–9.

    Google Scholar 

  41. Skov V, Glintborg D, Knudsen S, et al. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes. 2007;56:2349–55.

    Article  PubMed  CAS  Google Scholar 

  42. Skov V, Glintborg D, Knudsen S, et al. Pioglitazone enhances mitochondrial biogenesis and ribosomal protein biosynthesis in skeletal muscle in polycystic ovary syndrome. PLoS One. 2008;3:e2466.

    Article  PubMed  CAS  Google Scholar 

  43. Ronn T, Poulsen P, Hansson O, et al. Age influences DNA methylation and gene expression of COX7A1 in human skeletal muscle. Diabetologia. 2008;51:1159–68.

    Article  PubMed  CAS  Google Scholar 

  44. Ronn T, Poulsen P, Tuomi T, et al. Genetic variation in ATP5O is associated with skeletal muscle ATP50 mRNA expression and glucose uptake in young twins. PLoS One. 2009;4:e4793.

    Article  PubMed  CAS  Google Scholar 

  45. Ling C, Poulsen P, Carlsson E, et al. Multiple environmental and genetic factors influence skeletal muscle PGC-1alpha and PGC-1beta gene expression in twins. J Clin Invest. 2004;114:1518–26.

    PubMed  CAS  Google Scholar 

  46. Barres R, Osler ME, Yan J, et al. Non-CpG methylation of the PGC-1alpha promoter through DNMT3B controls mitochondrial density. Cell Metab. 2009;10:189–98.

    Article  PubMed  CAS  Google Scholar 

  47. Yang X, Pratley RE, Tokraks S, Bogardus C, Permana PA. Microarray profiling of skeletal muscle tissues from equally obese, nondiabetic insulin-sensitive and insulin-resistant Pima Indians. Diabetologia. 2002;45:1584–93.

    Article  PubMed  CAS  Google Scholar 

  48. Nguyen LL, Kriketos AD, Hancock DP, Caterson ID, Denyer GS. Insulin resistance does not influence gene expression in skeletal muscle. J Biochem Mol Biol. 2006;39:457–63.

    Article  PubMed  CAS  Google Scholar 

  49. Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 2003;300:1140–2.

    Article  PubMed  CAS  Google Scholar 

  50. Nair KS, Bigelow ML, Asmann YW, et al. Asian Indians have enhanced skeletal muscle mitochondrial capacity to produce ATP in association with severe insulin resistance. Diabetes. 2008;57:1166–75.

    Article  PubMed  CAS  Google Scholar 

  51. Hancock CR, Han DH, Chen M, et al. High-fat diets cause insulin resistance despite an increase in muscle mitochondria. Proc Natl Acad Sci U S A. 2008;105:7815–20.

    Article  PubMed  CAS  Google Scholar 

  52. Crunkhorn S, Dearie F, Mantzoros C, et al. Peroxisome proliferator activator receptor gamma coactivator-1 expression is reduced in obesity: potential pathogenic role of saturated fatty acids and p38 mitogen-activated protein kinase activation. J Biol Chem. 2007;282:15439–50.

    Article  PubMed  CAS  Google Scholar 

  53. Brons C, Jensen CB, Storgaard H, et al. Impact of short-term high-fat feeding on glucose and insulin metabolism in young healthy men. J Physiol. 2009;587(Pt 10):2387–97.

    Article  PubMed  CAS  Google Scholar 

  54. Jin W, Goldfine AB, Boes T, et al. Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance. J Clin Invest. 2011;121:918–29.

    Article  PubMed  CAS  Google Scholar 

  55. Patti ME, Corvera S. The Role of mitochondria in the pathogenesis of type 2 diabetes. Endocr Rev. 2010;31:364–95.

    Google Scholar 

  56. Karakelides H, Asmann YW, Bigelow ML, et al. Effect of insulin deprivation on muscle mitochondrial ATP production and gene transcript levels in type 1 diabetic subjects. Diabetes. 2007;56:2683–9.

    Article  PubMed  CAS  Google Scholar 

  57. Yechoor VK, Patti ME, Saccone R, Kahn CR. Coordinated patterns of gene expression for substrate and energy metabolism in skeletal muscle of diabetic mice. Proc Natl Acad Sci U S A. 2002;99:10587–92.

    Article  PubMed  CAS  Google Scholar 

  58. Frederiksen CM, Hojlund K, Hansen L, et al. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes. Diabetologia. 2008;51:2068–77.

    Article  PubMed  CAS  Google Scholar 

  59. Morino K, Petersen KF, Sono S, et al. Regulation of mitochondrial biogenesis by lipoprotein lipase in muscle of insulin-resistant offspring of parents with type 2 diabetes. Diabetes. 2012;61:877–87.

    Article  PubMed  CAS  Google Scholar 

  60. Thrush AB, Brindley DN, Chabowski A, Heigenhauser GJ, Dyck DJ. Skeletal muscle lipogenic protein expression is not different between lean and obese individuals: a potential factor in ceramide accumulation. J Clin Endocrinol Metab. 2009;94:5053–61.

    Article  PubMed  CAS  Google Scholar 

  61. Hulver MW, Berggren JR, Carper MJ, et al. Elevated stearoyl-CoA desaturase-1 expression in skeletal muscle contributes to abnormal fatty acid partitioning in obese humans. Cell Metab. 2005;2:251–61.

    Article  PubMed  CAS  Google Scholar 

  62. Pihlajamaki J, Lerin C, Itkonen P, et al. Expression of the splicing factor gene SFRS10 is reduced in human obesity and contributes to enhanced lipogenesis. Cell Metab. 2011;14:208–18.

    Article  PubMed  CAS  Google Scholar 

  63. Chibalin AV, Leng Y, Vieira E, et al. Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. Cell. 2008;132:375–86.

    Article  PubMed  CAS  Google Scholar 

  64. Parikh H, Carlsson E, Chutkow WA, et al. TXNIP regulates peripheral glucose metabolism in humans. PLoS Med. 2007;4:e158.

    Article  PubMed  CAS  Google Scholar 

  65. Kurucz I, Morva A, Vaag A, et al. Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes. 2002;51:1102–9.

    Article  PubMed  CAS  Google Scholar 

  66. Huang X, Vaag A, Carlsson E, Hansson M, Ahren B, Groop L. Impaired cathepsin L gene expression in skeletal muscle is associated with type 2 diabetes. Diabetes. 2003;52:2411–8.

    Article  PubMed  CAS  Google Scholar 

  67. Reynet C, Kahn CR. Rad: a member of the ras family overexpressed in muscle of type II diabetic humans. Science. 1993;262:1441–4.

    Article  PubMed  CAS  Google Scholar 

  68. Ilany J, Bilan PJ, Kapur S, et al. Overexpression of Rad in muscle worsens diet-induced insulin resistance and glucose intolerance and lowers plasma triglyceride level. Proc Natl Acad Sci U S A. 2006;103:4481–6.

    Article  PubMed  CAS  Google Scholar 

  69. Wu X, Patki A, Lara-Castro C, et al. Genes and biochemical pathways in human skeletal muscle affecting resting energy expenditure and fuel partitioning. J Appl Physiol. 2011;110:746–55.

    Article  PubMed  CAS  Google Scholar 

  70. Short KR, Vittone JL, Bigelow ML, et al. Impact of aerobic exercise training on age-related changes in insulin sensitivity and muscle oxidative capacity. Diabetes. 2003;52:1888–96.

    Article  PubMed  CAS  Google Scholar 

  71. Kuhl JE, Ruderman NB, Musi N, et al. Exercise training decreases the concentration of malonyl-CoA and increases the expression and activity of malonyl-CoA decarboxylase in human muscle. Am J Physiol Endocrinol Metab. 2006;290:E1296–303.

    Article  PubMed  CAS  Google Scholar 

  72. Cannon B, Nedergaard J. Cell biology: neither brown nor white. Nature. 2012;488:286–7.

    Article  PubMed  CAS  Google Scholar 

  73. Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360:1509–17.

    Article  PubMed  CAS  Google Scholar 

  74. Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360:1518–25.

    Article  PubMed  CAS  Google Scholar 

  75. Wu J, Bostrom P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150:366–76.

    Article  PubMed  CAS  Google Scholar 

  76. Jernas M, Palming J, Sjoholm K, et al. Separation of human adipocytes by size: hypertrophic fat cells display distinct gene expression. FASEB J. 2006;20:1540–2.

    Article  PubMed  CAS  Google Scholar 

  77. Olsson M, Olsson B, Jacobson P, et al. Expression of the selenoprotein S (SELS) gene in subcutaneous adipose tissue and SELS genotype are associated with metabolic risk factors. Metabolism. 2011;60:114–20.

    Article  PubMed  CAS  Google Scholar 

  78. Franck N, Gummesson A, Jernas M, et al. Identification of adipocyte genes regulated by caloric intake. J Clin Endocrinol Metab. 2011;96:E413–8.

    Article  PubMed  CAS  Google Scholar 

  79. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev. 2000;21:697–738.

    Article  PubMed  CAS  Google Scholar 

  80. Svensson PA, Gabrielsson BG, Jernas M, Gummesson A, Sjoholm K. Regulation of human aldoketoreductase 1C3 (AKR1C3) gene expression in the adipose tissue. Cell Mol Biol Lett. 2008;13:599–613.

    Article  PubMed  CAS  Google Scholar 

  81. Linder K, Arner P, Flores-Morales A, Tollet-Egnell P, Norstedt G. Differentially expressed genes in visceral or subcutaneous adipose tissue of obese men and women. J Lipid Res. 2004;45:148–54.

    Article  PubMed  CAS  Google Scholar 

  82. Sjoholm K, Palming J, Olofsson LE, et al. A microarray search for genes predominantly expressed in human omental adipocytes: adipose tissue as a major production site of serum amyloid A. J Clin Endocrinol Metab. 2005;90:2233–9.

    Article  PubMed  CAS  Google Scholar 

  83. Quinkler M, Bujalska IJ, Tomlinson JW, Smith DM, Stewart PM. Depot-specific prostaglandin synthesis in human adipose tissue: a novel possible mechanism of adipogenesis. Gene. 2006;380:137–43.

    Article  PubMed  CAS  Google Scholar 

  84. Poitou C, Divoux A, Faty A, et al. Role of serum amyloid a in adipocyte-macrophage cross talk and adipocyte cholesterol efflux. J Clin Endocrinol Metab. 2009;94:1810–7.

    Article  PubMed  CAS  Google Scholar 

  85. Bujalska IJ, Quinkler M, Tomlinson JW, Montague CT, Smith DM, Stewart PM. Expression profiling of 11beta-hydroxysteroid dehydrogenase type-1 and glucocorticoid-target genes in subcutaneous and omental human preadipocytes. J Mol Endocrinol. 2006;37:327–40.

    Article  PubMed  CAS  Google Scholar 

  86. Lee YH, Tharp WG, Maple RL, Nair S, Permana PA, Pratley RE. Amyloid precursor protein expression is upregulated in adipocytes in obesity. Obesity. 2008;16:1493–500.

    Article  PubMed  CAS  Google Scholar 

  87. Taleb S, Lacasa D, Bastard JP, et al. Cathepsin S, a novel biomarker of adiposity: relevance to atherogenesis. FASEB J. 2005;19:1540–2.

    PubMed  CAS  Google Scholar 

  88. Kolehmainen M, Salopuro T, Schwab US, et al. Weight reduction modulates expression of genes involved in extracellular matrix and cell death: the GENOBIN study. Int J Obes. 2008;32:292–303.

    Article  CAS  Google Scholar 

  89. Marrades MP, Milagro FI, Martinez JA, Moreno-Aliaga MJ. Differential expression of aquaporin 7 in adipose tissue of lean and obese high fat consumers. Biochem Biophys Res Commun. 2006;339:785–9.

    Article  PubMed  CAS  Google Scholar 

  90. Klimcakova E, Roussel B, Marquez-Quinones A, et al. Worsening of obesity and metabolic status yields similar molecular adaptations in human subcutaneous and visceral adipose tissue: decreased metabolism and increased immune response. J Clin Endocrinol Metab. 2011;96:E73–82.

    Article  PubMed  CAS  Google Scholar 

  91. Zhang Y, Bosse Y, Marceau P, et al. Gene expression variability in subcutaneous and omental adipose tissue of obese men. Gene Expr. 2007;14:35–46.

    Article  PubMed  CAS  Google Scholar 

  92. Wolfs MG, Rensen SS, Bruin-Van Dijk EJ, et al. Co-expressed immune and metabolic genes in visceral and subcutaneous adipose tissue from severely obese individuals are associated with plasma HDL and glucose levels: a microarray study. BMC Med Genomics. 2010;3:34.

    Article  PubMed  CAS  Google Scholar 

  93. Baranova A, Collantes R, Gowder SJ, et al. Obesity-related differential gene expression in the visceral adipose tissue. Obes Surg. 2005;15:758–65.

    Article  PubMed  Google Scholar 

  94. Prokunina-Olsson L, Kaplan LM, Schadt EE, Collins FS. Alternative splicing of TCF7L2 gene in omental and subcutaneous adipose tissue and risk of type 2 diabetes. PLoS One. 2009;4:e7231.

    Article  PubMed  CAS  Google Scholar 

  95. Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131:242–56.

    Article  PubMed  CAS  Google Scholar 

  96. Walewski JL, Ge F, Gagner M, et al. Adipocyte accumulation of long-chain fatty acids in obesity is multifactorial, resulting from increased fatty acid uptake and decreased activity of genes involved in fat utilization. Obes Surg. 2010;20:93–107.

    Article  PubMed  Google Scholar 

  97. Marrades MP, Gonzalez-Muniesa P, Martinez JA, Moreno-Aliaga MJ. A dysregulation in CES1, APOE and other lipid metabolism-related genes is associated to cardiovascular risk factors linked to obesity. Obes Facts. 2010;3:312–8.

    Article  PubMed  CAS  Google Scholar 

  98. Maclaren R, Cui W, Simard S, Cianflone K. Influence of obesity and insulin sensitivity on insulin signaling genes in human omental and subcutaneous adipose tissue. J Lipid Res. 2008;49:308–23.

    Article  PubMed  CAS  Google Scholar 

  99. Kursawe R, Eszlinger M, Narayan D, et al. Cellularity and adipogenic profile of the abdominal subcutaneous adipose tissue from obese adolescents: association with insulin resistance and hepatic steatosis. Diabetes. 2010;59:2288–96.

    Article  PubMed  CAS  Google Scholar 

  100. Marrades MP, Gonzalez-Muniesa P, Arteta D, Martinez JA, Moreno-Aliaga MJ. Orchestrated downregulation of genes involved in oxidative metabolic pathways in obese vs lean high-fat young male consumers. J Physiol Biochem. 2011;67:15–26.

    Article  PubMed  CAS  Google Scholar 

  101. Mustelin L, Pietilainen KH, Rissanen A, et al. Acquired obesity and poor physical fitness impair expression of genes of mitochondrial oxidative phosphorylation in monozygotic twins discordant for obesity. Am J Physiol Endocrinol Metab. 2008;295:E148–54.

    Article  PubMed  CAS  Google Scholar 

  102. Lee YH, Nair S, Rousseau E, et al. Microarray profiling of isolated abdominal subcutaneous adipocytes from obese vs non-obese Pima Indians: increased expression of inflammation-related genes. Diabetologia. 2005;48:1776–83.

    Article  PubMed  CAS  Google Scholar 

  103. Traurig MT, Permana PA, Nair S, Kobes S, Bogardus C, Baier LJ. Differential expression of matrix metalloproteinase 3 (MMP3) in preadipocytes/stromal vascular cells from nonobese nondiabetic vs obese nondiabetic Pima Indians. Diabetes. 2006;55:3160–5.

    Article  PubMed  CAS  Google Scholar 

  104. Dahlman I, Kaaman M, Olsson T, et al. A unique role of monocyte chemoattractant protein 1 among chemokines in adipose tissue of obese subjects. J Clin Endocrinol Metab. 2005;90:5834–40.

    Article  PubMed  CAS  Google Scholar 

  105. van Dijk SJ, Feskens EJ, Bos MB, et al. A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome. Am J Clin Nutr. 2009;90:1656–64.

    Article  PubMed  CAS  Google Scholar 

  106. Heneghan HM, Miller N, McAnena OJ, O'Brien T, Kerin MJ. Differential miRNA expression in omental adipose tissue and in the circulation of obese patients identifies novel metabolic biomarkers. J Clin Endocrinol Metab. 2011;96:E846–50.

    Article  PubMed  CAS  Google Scholar 

  107. Ortega FJ, Moreno-Navarrete JM, Pardo G, et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS One. 2010;5:e9022.

    Article  PubMed  CAS  Google Scholar 

  108. Martinelli R, Nardelli C, Pilone V, et al. miR-519d overexpression is associated with human obesity. Obesity. 2010;18:2170–6.

    Article  PubMed  CAS  Google Scholar 

  109. Yang X, Jansson PA, Nagaev I, et al. Evidence of impaired adipogenesis in insulin resistance. Biochem Biophys Res Commun. 2004;317:1045–51.

    Article  PubMed  CAS  Google Scholar 

  110. Urs S, Smith C, Campbell B, et al. Gene expression profiling in human preadipocytes and adipocytes by microarray analysis. J Nutr. 2004;134:762–70.

    PubMed  CAS  Google Scholar 

  111. Nair S, Lee YH, Rousseau E, et al. Increased expression of inflammation-related genes in cultured preadipocytes/stromal vascular cells from obese compared with non-obese Pima Indians. Diabetologia. 2005;48:1784–8.

    Article  PubMed  CAS  Google Scholar 

  112. Klimcakova E, Roussel B, Kovacova Z, et al. Macrophage gene expression is related to obesity and the metabolic syndrome in human subcutaneous fat as well as in visceral fat. Diabetologia. 2011;54:876–87.

    Article  PubMed  CAS  Google Scholar 

  113. Shah R, Lu Y, Hinkle CC, et al. Gene profiling of human adipose tissue during evoked inflammation in vivo. Diabetes. 2009;58:2211–9.

    Article  PubMed  CAS  Google Scholar 

  114. Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest. 2011;121:2094–101.

    Article  PubMed  CAS  Google Scholar 

  115. Dankel SN, Fadnes DJ, Stavrum AK, et al. Switch from stress response to homeobox transcription factors in adipose tissue after profound fat loss. PLoS One. 2010;5:e11033.

    Article  PubMed  CAS  Google Scholar 

  116. Lee MJ, Gong DW, Burkey BF, Fried SK. Pathways regulated by glucocorticoids in omental and subcutaneous human adipose tissues: a microarray study. Am J Physiol Endocrinol Metab. 2011;300:E571–80.

    Article  PubMed  CAS  Google Scholar 

  117. Gummesson A, Jernas M, Svensson PA, et al. Relations of adipose tissue CIDEA gene expression to basal metabolic rate, energy restriction, and obesity: population-based and dietary intervention studies. J Clin Endocrinol Metab. 2007;92:4759–65.

    Article  PubMed  CAS  Google Scholar 

  118. Capel F, Klimcakova E, Viguerie N, et al. Macrophages and adipocytes in human obesity: adipose tissue gene expression and insulin sensitivity during calorie restriction and weight stabilization. Diabetes. 2009;58:1558–67.

    Article  PubMed  CAS  Google Scholar 

  119. Marquez-Quinones A, Mutch DM, Debard C, et al. Adipose tissue transcriptome reflects variations between subjects with continued weight loss and subjects regaining weight 6 mo after caloric restriction independent of energy intake. Am J Clin Nutr. 2010;92:975–84.

    Article  PubMed  CAS  Google Scholar 

  120. Behre CJ, Gummesson A, Jernas M, et al. Dissociation between adipose tissue expression and serum levels of adiponectin during and after diet-induced weight loss in obese subjects with and without the metabolic syndrome. Metabolism. 2007;56:1022–8.

    Article  PubMed  CAS  Google Scholar 

  121. Cancello R, Henegar C, Viguerie N, et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54:2277–86.

    Article  PubMed  CAS  Google Scholar 

  122. Goldfine AB, Crunkhorn S, Costello M, et al. Necdin and E2F4 are modulated by rosiglitazone therapy in diabetic human adipose and muscle tissue. Diabetes. 2006;55:640–50.

    Article  PubMed  CAS  Google Scholar 

  123. Kosteli A, Sugaru E, Haemmerle G, et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest. 2010;120:3466–79.

    Article  PubMed  CAS  Google Scholar 

  124. Kotronen A, Seppala-Lindroos A, Bergholm R, Yki-Jarvinen H. Tissue specificity of insulin resistance in humans: fat in the liver rather than muscle is associated with features of the metabolic syndrome. Diabetologia. 2008;51:130–8.

    Article  PubMed  CAS  Google Scholar 

  125. Diraison F, Dusserre E, Vidal H, Sothier M, Beylot M. Increased hepatic lipogenesis but decreased expression of lipogenic gene in adipose tissue in human obesity. Am J Physiol Endocrinol Metab. 2002;282:E46–51.

    PubMed  CAS  Google Scholar 

  126. Sharma A, Sharma VK, Horn-Saban S, Lancet D, Ramachandran S, Brahmachari SK. Assessing natural variations in gene expression in humans by comparing with monozygotic twins using microarrays. Physiol Genomics. 2005;21:117–23.

    Google Scholar 

  127. Cortez-Pinto H, Chatham J, Chacko VP, Arnold C, Rashid A, Diehl AM. Alterations in liver ATP homeostasis in human nonalcoholic steatohepatitis: a pilot study. JAMA. 1999;282:1659–64.

    Article  PubMed  CAS  Google Scholar 

  128. Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol Cell. 2000;6:87–97.

    PubMed  CAS  Google Scholar 

  129. Biddinger SB, Hernandez-Ono A, Rask-Madsen C, et al. Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metab. 2008;7:125–34.

    Article  PubMed  CAS  Google Scholar 

  130. Sreekumar R, Rosado B, Rasmussen D, Charlton M. Hepatic gene expression in histologically progressive nonalcoholic steatohepatitis. Hepatology. 2003;38:244–51.

    Article  PubMed  CAS  Google Scholar 

  131. Younossi ZM, Baranova A, Ziegler K, et al. A genomic and proteomic study of the spectrum of nonalcoholic fatty liver disease. Hepatology. 2005;42:665–74.

    Article  PubMed  CAS  Google Scholar 

  132. Younossi ZM, Gorreta F, Ong JP, et al. Hepatic gene expression in patients with obesity-related non-alcoholic steatohepatitis. Liver Int. 2005;25:760–71.

    Article  PubMed  CAS  Google Scholar 

  133. Stepanova M, Hossain N, Afendy A, et al. Hepatic gene expression of Caucasian and African-American patients with obesity-related non-alcoholic fatty liver disease. Obes Surg. 2010;20:640–50.

    Article  PubMed  Google Scholar 

  134. Cheung O, Puri P, Eicken C, et al. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48:1810–20.

    Article  PubMed  CAS  Google Scholar 

  135. Baker SS, Baker RD, Liu W, Nowak NJ, Zhu L. Role of alcohol metabolism in non-alcoholic steatohepatitis. PLoS One. 2010;5:e9570.

    Article  PubMed  CAS  Google Scholar 

  136. Chiappini F, Barrier A, Saffroy R, et al. Exploration of global gene expression in human liver steatosis by high-density oligonucleotide microarray. Lab Invest. 2006;86:154–65.

    Article  PubMed  CAS  Google Scholar 

  137. Takamura T, Misu H, Matsuzawa-Nagata N, et al. Obesity upregulates genes involved in oxidative phosphorylation in livers of diabetic patients. Obesity. 2008;16:2601–9.

    Article  PubMed  CAS  Google Scholar 

  138. Pihlajamaki J, Boes T, Kim EY, et al. Thyroid hormone-related regulation of gene expression in human fatty liver. J Clin Endocrinol Metab. 2009;94:3521–9.

    Article  PubMed  CAS  Google Scholar 

  139. Elam MB, Yellaturu C, Howell GE, et al. Dysregulation of sterol regulatory element binding protein-1c in livers of morbidly obese women is associated with altered suppressor of cytokine signaling-3 and signal transducer and activator of transcription-1 signaling. Metabolism. 2010;59:587–98.

    Article  PubMed  CAS  Google Scholar 

  140. Hietaniemi M, Jokela M, Rantala M, et al. The effect of a short-term hypocaloric diet on liver gene expression and metabolic risk factors in obese women. Nutr Metab Cardiovasc Dis. 2009;19:177–83.

    Article  PubMed  CAS  Google Scholar 

  141. Szalowska E, Dijkstra M, Elferink MG, et al. Comparative analysis of the human hepatic and adipose tissue transcriptomes during LPS-induced inflammation leads to the identification of differential biological pathways and candidate biomarkers. BMC Med Genomics. 2011;4:71.

    Article  PubMed  CAS  Google Scholar 

  142. Swagell CD, Henly DC, Morris CP. Expression analysis of a human hepatic cell line in response to palmitate. Biochem Biophys Res Commun. 2005;328:432–41.

    Article  PubMed  CAS  Google Scholar 

  143. Gunton JE, Kulkarni RN, Yim S, et al. Loss of ARNT/HIF1beta mediates altered gene expression and pancreatic-islet dysfunction in human type 2 diabetes. Cell. 2005;122:337–49.

    Article  PubMed  CAS  Google Scholar 

  144. Lyssenko V, Lupi R, Marchetti P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007;117:2155–63.

    Article  PubMed  CAS  Google Scholar 

  145. Taneera J, Lang S, Sharma A, et al. A systems genetics approach identifies genes and pathways for type 2 diabetes in human islets. Cell Metab. 2012;16:122–34.

    Article  PubMed  CAS  Google Scholar 

  146. Marselli L, Thorne J, Dahiya S, et al. Gene expression profiles of Beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS One. 2010;5:e11499.

    Article  PubMed  CAS  Google Scholar 

  147. Ling C, Del Guerra S, Lupi R, et al. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia. 2008;51:615–22.

    Google Scholar 

  148. Grayson BL, Wang L, Aune TM. Peripheral blood gene expression profiles in metabolic syndrome, coronary artery disease and type 2 diabetes. Genes Immun. 2011;12:341–51.

    Article  PubMed  CAS  Google Scholar 

  149. Mao J, Ai J, Zhou X, et al. Transcriptomic profiles of peripheral white blood cells in type II diabetes and racial differences in expression profiles. BMC Genomics. 2011;12 Suppl 5:S12.

    Article  PubMed  CAS  Google Scholar 

  150. Zelezniak A, Pers TH, Soares S, Patti ME, Patil KR. Metabolic network topology reveals transcriptional regulatory signatures of type 2 diabetes. PLoS Comput Biol. 2010;6:e1000729.

    Article  PubMed  CAS  Google Scholar 

  151. Ptitsyn A, Hulver M, Cefalu W, York D, Smith SR. Unsupervised clustering of gene expression data points at hypoxia as possible trigger for metabolic syndrome. BMC Genomics. 2006;7:318.

    Article  PubMed  CAS  Google Scholar 

  152. Tiffin N, Adie E, Turner F, et al. Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 2006;34:3067–81.

    Article  PubMed  CAS  Google Scholar 

  153. Mori MA, Liu M, Bezy O, et al. A systems biology approach identifies inflammatory abnormalities between mouse strains prior to development of metabolic disease. Diabetes. 2010;59:2960–71.

    Article  PubMed  CAS  Google Scholar 

  154. Jin W, Goldfine A, Boes T, et al. Increased SRF transcriptional activity in human and mouse skeletal muscle is a signature of insulin resistance. J Biol Chem. 2011;121:918–29.

    CAS  Google Scholar 

  155. Yi Z, Bowen BP, Hwang H, et al. Global relationship between the proteome and transcriptome of human skeletal muscle. J Proteome Res. 2008;7:3230–41.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge research support from CAPES (government of Brazil, to V.S.), NIH R56 DK096158 (to M.E.P.), the American Diabetes Association (to M.E.P.), and the Graetz Fund (to M.E.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Elizabeth Patti.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Summary of studies of gene expression changes referenced in the review. (DOC 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sales, V., Patti, ME. The Ups and Downs of Insulin Resistance and Type 2 Diabetes: Lessons from Genomic Analyses in Humans. Curr Cardiovasc Risk Rep 7, 46–59 (2013). https://doi.org/10.1007/s12170-012-0283-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12170-012-0283-8

Keywords

Navigation