Skip to main content
Log in

Rapid Classification of Coffee Products by Data Mining Models from Direct Electrospray and Plasma-Based Mass Spectrometry Analyses

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

In coffee manufacture, analytical methods with high-throughput and cost efficacy are required for process development and quality control. Thus, we investigated the applicability of direct mass spectrometry methods to distinguish coffee products according to species, geographic origin and processing. We tested the performance of the established method direct-injection electrospray mass spectrometry (DIESI-MS) and the emerging method low-temperature plasma ionization mass spectrometry (LTP-MS). Both methods are capable of classifying coffee products, but DIESI-MS and LTP-MS yield complementary information about the chemical composition of the samples. DIESI-MS shows a broad molecular weight range of compounds. In contrast, LTP-MS detects mainly low molecular weight compounds, which correspond to quality-related ingredients, such as caffeine and purines. LTP-MS displays a high potential for rapid quality control measurements and online monitoring, because no sample processing is required. Data mining methods support the discovery of ‘important’ compounds, which are responsible for the discrimination between sample groups, and reveal associated chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alonso-Salces RM, Serra F, Reniero F, Ká H (2009) Botanical and geographical characterization of green coffee (Coffea arabica and Coffea canephora): chemometric evaluation of phenolic and methylxanthine contents. J Agric Food Chem 57:4224–4235. doi:10.1021/jf8037117

    Article  CAS  Google Scholar 

  • Amorim ACL, Hovell AMC, Pinto AC et al (2009) Green and roasted arabica coffees differentiated by ripeness, process and cup quality via electrospray ionization mass spectrometry fingerprinting. J Braz Chem Soc 20:313–321. doi:10.1590/S0103-50532009000200017

    Article  CAS  Google Scholar 

  • Baggenstoss J, Thomann D, Perren R, Escher F (2010) Aroma recovery from roasted coffee by wet grinding. J Food Sci 75:C697–C702. doi:10.1111/j.1750-3841.2010.01822.x

    Article  CAS  Google Scholar 

  • Buffo RA, Cardelli-Freire C (2004) Coffee flavour: an overview. Flavour Fragr J 19:99–104. doi:10.1002/ffj.1325

    Article  CAS  Google Scholar 

  • Choi M-Y, Choi W, Park JH et al (2010) Determination of coffee origins by integrated metabolomic approach of combining multiple analytical data. Food Chem 121:1260–1268. doi:10.1016/j.foodchem.2010.01.035

    Article  CAS  Google Scholar 

  • Eakin H, Winkels A, Sendzimir J (2009) Nested vulnerability: exploring cross-scale linkages and vulnerability teleconnections in Mexican and Vietnamese coffee systems. Environ Sci Pol 12:398–412

    Article  Google Scholar 

  • FAOSTAT (2013) http://faostat.fao.org/

  • Farah A (2012) Coffee constituents. In: Chu Y-F (ed) Coffee. Wiley, Hoboken, pp. 21–58

    Chapter  Google Scholar 

  • Farah A, de Paulis T, Trugo LC, Martin PR (2005) Effect of roasting on the formation of chlorogenic acid lactones in coffee. J Agric Food Chem 53:1505–1513. doi:10.1021/jf048701t

    Article  CAS  Google Scholar 

  • Flament I, Bessière-Thomas Y (2002) Coffee flavor chemistry. Wiley, Chichester; New York

    Google Scholar 

  • Freiberger EB, Kaufmann KC, Bona E et al (2015) Encapsulation of roasted coffee oil in biocompatible nanoparticles. LWT-Food Sci Technol 64:381–389. doi:10.1016/j.lwt.2015.05.039

    Article  CAS  Google Scholar 

  • García-Flores M, Juárez-Colunga S, García-Casarrubias A et al (2015) Metabolic profiling of plant extracts using direct-injection electrospray ionization mass spectrometry allows for high-throughput phenotypic characterization according to genetic and environmental effects. J Agric Food Chem 63:1042–1052. doi:10.1021/jf504853w

    Article  Google Scholar 

  • García-Flores M, Juárez-Colunga S, Montero-Vargas JM et al (2012) Evaluating the physiological state of maize (Zea mays L.) plants by direct-injection electrospray mass spectrometry (DIESI-MS). Mol BioSyst 8:1658–1660. doi:10.1039/c2mb25056j

    Article  Google Scholar 

  • Garrett R, Vaz BG, Hovell AMC et al (2012) Arabica and Robusta coffees: identification of major polar compounds and quantification of blends by direct-infusion electrospray ionization–mass spectrometry. J Agric Food Chem 60:4253–4258. doi:10.1021/jf300388m

    Article  CAS  Google Scholar 

  • Gonzalez-Rios O, Suarez-Quiroz ML, Boulanger R et al (2007) Impact of “ecological” post-harvest processing on coffee aroma: II. Roasted coffee. J Food Compos Anal 20:297–307. doi:10.1016/j.jfca.2006.12.004

    Article  CAS  Google Scholar 

  • Harper JD, Charipar NA, Mulligan CC et al (2008) Low-temperature plasma probe for ambient desorption ionization. Anal Chem 80:9097–9104

    Article  CAS  Google Scholar 

  • Jeszka-Skowron M, Zgoła-Grześkowiak A, Grześkowiak T (2014) Analytical methods applied for the characterization and the determination of bioactive compounds in coffee. Eur Food Res Technol 240:19–31. doi:10.1007/s00217-014-2356-z

    Article  Google Scholar 

  • Jha S, Bacon CM, Philpott SM, et al (2011) A review of ecosystem services, farmer livelihoods, and value chains in shade coffee agroecosystems. In: Integrating agriculture, conservation and ecotourism: examples from the field. Springer, pp 141–208

  • Lewin B, Giovannucci D, Varangis P (2004) Coffee markets: new paradigms in global supply and demand.

  • Martínez Jarquín S, Winkler R (2016) Non-thermal plasma jet device as source of spatial ionization for ambient mass spectrometry and method of application. United States Patent 9362100

  • Martínez-Jarquín S, Moreno-Pedraza A, Guillén-Alonso H, Winkler R (2016) Template for 3D printing a low-temperature plasma probe. Anal Chem. doi:10.1021/acs.analchem.6b01019

    Google Scholar 

  • Martínez-Jarquín S, Winkler R (2013) Design of a low-temperature plasma (LTP) probe with adjustable output temperature and variable beam diameter for the direct detection of organic molecules. Rapid Commun Mass Spectrom 27:629–634. doi:10.1002/rcm.6494

    Article  Google Scholar 

  • Martín MJ, Pablos F, González AG (1998) Discrimination between arabica and robusta green coffee varieties according to their chemical composition. Talanta 46:1259–1264. doi:10.1016/S0039-9140(97)00409-8

    Article  Google Scholar 

  • Martín MJ, Pablos F, González AG et al (2001) Fatty acid profiles as discriminant parameters for coffee varieties differentiation. Talanta 54:291–297. doi:10.1016/S0039-9140(00)00647-0

    Article  Google Scholar 

  • Mendonça JCF, Franca AS, Oliveira LS, Nunes M (2008) Chemical characterisation of non-defective and defective green arabica and robusta coffees by electrospray ionization-mass spectrometry (ESI-MS). Food Chem 111:490–497. doi:10.1016/j.foodchem.2008.03.080

    Article  Google Scholar 

  • Montero-Vargas JM, González-González LH, Gálvez-Ponce E et al (2013) Metabolic phenotyping for the classification of coffee trees and the exploration of selection markers. Mol BioSyst 9:693–699. doi:10.1039/C3MB25509C

    Article  CAS  Google Scholar 

  • Moreno FL, Quintanilla-Carvajal MX, Sotelo LI et al (2015) Volatile compounds, sensory quality and ice morphology in falling-film and block freeze concentration of coffee extract. J Food Eng 166:64–71. doi:10.1016/j.jfoodeng.2015.05.018

    Article  CAS  Google Scholar 

  • Nascimento EA, Morais SA, Chang R, et al (2015) Looking for unknown molecules in Arabica and Robusta coffee brews by high performance liquid chromatography coupled to high resolution mass spectrometry and differentiating both coffee species by this technique.

  • Oestreich-Janzen S (2010) Chemistry of coffee In: Comprehensive natural products II: Chemistry and Biology: 10 Volume Set. In: Mander L, Liu H-W (eds). Elsevier Science

  • Padma Ishwarya S, Anandharamakrishnan C (2015) Spray-freeze-drying approach for soluble coffee processing and its effect on quality characteristics. J Food Eng 149:171–180. doi:10.1016/j.jfoodeng.2014.10.011

    Article  Google Scholar 

  • Parras P, Martínez-Tomé M, Jiménez AM, Murcia MA (2007) Antioxidant capacity of coffees of several origins brewed following three different procedures. Food Chem 102:582–592

    Article  CAS  Google Scholar 

  • Pizarro C, Esteban-Díez I, González-Sáiz JM (2007) Mixture resolution according to the percentage of robusta variety in order to detect adulteration in roasted coffee by near infrared spectroscopy. Anal Chim Acta 585:266–276. doi:10.1016/j.aca.2006.12.057

    Article  CAS  Google Scholar 

  • Ponte S (2002) The latte revolution’? Regulation, markets and consumption in the global coffee chain. World Dev 30:1099–1122

    Article  Google Scholar 

  • Rakesh Jaiswal MFM (2014) Does roasted coffee contain chlorogenic acid lactones or/and cinnamoylshikimate esters? Food Res Int 61:214–227. doi:10.1016/j.foodres.2013.09.040

    Article  Google Scholar 

  • Rogers WJ, Michaux S, Bastin M, Bucheli P (1999) Changes to the content of sugars, sugar alcohols, myo-inositol, carboxylic acids and inorganic anions in developing grains from different varieties of Robusta (Coffea canephora) and Arabica (C. arabica) coffees. Plant Sci 149:115–123. doi:10.1016/S0168-9452(99)00147-8

    Article  CAS  Google Scholar 

  • Romano R, Santini A, Le Grottaglie L et al (2014) Identification markers based on fatty acid composition to differentiate between roasted Arabica and Canephora (Robusta) coffee varieties in mixtures. J Food Compos Anal 35:1–9. doi:10.1016/j.jfca.2014.04.001

    Article  CAS  Google Scholar 

  • Sturm M, Bertsch A, Gröpl C et al (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163. doi:10.1186/1471-2105-9-163

    Article  Google Scholar 

  • Tarzia A, Dos Santos Scholz MB, De Oliveira Petkowicz CL (2010) Influence of the postharvest processing method on polysaccharides and coffee beverages. Int J Food Sci Technol 45:2167–2175. doi:10.1111/j.1365-2621.2010.02388.x

    Article  CAS  Google Scholar 

  • Wei F, Furihata K, Koda M et al (2012) 13C NMR-based metabolomics for the classification of green coffee beans according to variety and origin. J Agric Food Chem 60:10118–10125. doi:10.1021/jf3033057

    Article  CAS  Google Scholar 

  • Weschenfelder TA, Lantin P, Viegas MC et al (2015) Concentration of aroma compounds from an industrial solution of soluble coffee by pervaporation process. J Food Eng 159:57–65. doi:10.1016/j.jfoodeng.2015.03.018

    Article  CAS  Google Scholar 

  • Williams G (2011) Data mining with rattle and R. Springer New York, New York, NY

    Book  Google Scholar 

  • Winkler R (2015a) SpiderMass: semantic database creation and tripartite metabolite identification strategy. J Mass Spectrom 50:538–541. doi:10.1002/jms.3559

    Article  CAS  Google Scholar 

  • Winkler R (2015b) An evolving computational platform for biological mass spectrometry: workflows, statistics and data mining with MASSyPup64. Peer J 3:e1401. doi:10.7717/peerj.1401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Winkler.

Ethics declarations

Funding

This study was funded by Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA) and the Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico, with grants AVANCE N° 127280, INNOVATEC PEI 451/2012, FIT S0017-2015-01, I0017/CB2010-01/151596, FINNOVA I010/260/2014 and FRONTERAS 2015-2/814. RGB, JMMV, SMJ and AMP thank CONACYT for their postgraduate fellowships.

Conflict of Interest

SMJ and RW are inventors of the patent application ‘Non-thermal plasma jet device as source of spatial ionization for ambient mass spectrometry and method of application’ (WO 2014/057409, United States Patent 9362100). The micromass ZQ was borrowed from Waters, Mexico. Agroindustrias Unidas de Mexico SA de CV and Garcomex SA de CV provided samples. The sponsors were not involved in the study design, collection, analysis or interpretation of data.

Informed Consent

Not applicable.

Electronic supplementary material

Figure S1

(PDF 1254 kb)

Figure S2

(PDF 4225 kb)

Figure S3

(PDF 131 kb)

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamboa-Becerra, R., Montero-Vargas, J.M., Martínez-Jarquín, S. et al. Rapid Classification of Coffee Products by Data Mining Models from Direct Electrospray and Plasma-Based Mass Spectrometry Analyses. Food Anal. Methods 10, 1359–1368 (2017). https://doi.org/10.1007/s12161-016-0696-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-016-0696-y

Keywords

Navigation