Skip to main content

A Workflow for Lipid Annotation in Coffee Samples by Liquid Chromatography-Mass Spectrometry

  • Chapter
  • First Online:
Mass Spectrometry for Food Analysis

Abstract

Lipids in coffee are not only precursors for flavor and volatile compounds, but also considered essential for brew taste and body. They account for around 7–15% of the dry bean weight in both Arabica and Robusta green coffee beans and include different subclasses, such as triacylglycerols (TAG), phospholipids (PL), and βN-alkanoyl-5-hydroxytryptamides. Due to this fraction relevance, our work provides a protocol to analyze lipids in coffee samples by liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS). An open-source metabolomics software is used for feature detection, data alignment, and lipid annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alves MA, Lamichhane S, Dickens A et al (2021) Systems biology approaches to study lipidomes in health and disease. Biochim Biophys Acta Mol Cell Biol Lipids 1866:158857. https://doi.org/10.1016/j.bbalip.2020.158857

    Article  CAS  PubMed  Google Scholar 

  2. Züllig T, Trötzmüller M, Köfeler HC (2020) Lipidomics from sample preparation to data analysis: a primer. Anal Bioanal Chem 412:2191–2209. https://doi.org/10.1007/s00216-019-02241-y

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad R, Ahmad N, AlOthman F et al (2020) Extraction of methyl xanthines and their UHPLC–DAD determination in consumable beverages used in Eastern province of Saudi Arabia. Biomed Chromatogr 34:1–12. https://doi.org/10.1002/bmc.4712

    Article  CAS  Google Scholar 

  4. de Souza Gois Barbosa M, Dos Santos Scholz MB, Kitzberger CSG, de Toledo Benassi M (2019) Correlation between the composition of green Arabica coffee beans and the sensory quality of coffee brews. Food Chem 292:275–280. https://doi.org/10.1016/j.foodchem.2019.04.072

    Article  CAS  Google Scholar 

  5. Speer K, Kölling-Speer I (2019) Lipids. In: Farah A (ed) Coffee production, quality and chemistry, 1st edn. Royal Society of Chemistry, London

    Google Scholar 

  6. Garrett R, Schmidt EM, Pereira LFP et al (2013) Discrimination of arabica coffee cultivars by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and chemometrics. LWT Food Sci Technol 50:496–502. https://doi.org/10.1016/j.lwt.2012.08.016

    Article  CAS  Google Scholar 

  7. Villarreal D, Laffargue A, Posada H et al (2009) Genotypic and environmental effects on coffee (Coffea arabica L.) bean fatty acid profile: impact on variety and origin chemometric determination. J Agric Food Chem 57:11321–11327. https://doi.org/10.1021/jf902441n

    Article  CAS  PubMed  Google Scholar 

  8. Amorim ACL, Hovell AMC, Pinto AC et al (2009) Green and roasted Arabica coffees differentiated by ripeness, process and cup quality via electrospray ionization mass spectrometry fingerprinting. J Braz Chem Soc 20:313–321. https://doi.org/10.1590/S0103-50532009000200017

    Article  CAS  Google Scholar 

  9. Novaes FJM, Oigman SS, de Souza ROMA et al (2015) New approaches on the analyses of thermolabile coffee diterpenes by gas chromatography and its relationship with cup quality. Talanta 139:159–166. https://doi.org/10.1016/j.talanta.2014.12.025

    Article  CAS  PubMed  Google Scholar 

  10. Dussert S, Davey M, Laffargue A, Doulbeau S, Swennen R, Etienne H (2006) Oxidative stress, phospholipid loss and lipid hydrolysis during drying and storage of intermediate seeds. Physiol Plant 127:192–204. https://doi.org/10.1111/j.1399-3054.2006.00666.x

    Article  CAS  Google Scholar 

  11. Zhou L, Khalil A, Bindler F et al (2013) Effect of heat treatment on the content of individual phospholipids in coffee beans. Food Chem 141:3846–3850. https://doi.org/10.1016/j.foodchem.2013.06.056

    Article  CAS  PubMed  Google Scholar 

  12. Xu L, Lao F, Xu Z et al (2019) Use of liquid chromatography quadrupole time-of-flight mass spectrometry and metabolomic approach to discriminate coffee brewed by different methods. Food Chem 286:106–112. https://doi.org/10.1016/j.foodchem.2019.01.154

    Article  CAS  PubMed  Google Scholar 

  13. Anagbogu CF, Zhou J, Olasupo FO et al (2021) Lipidomic and metabolomic profiles of Coffea canephora L. beans cultivated in southwestern Nigeria. PLoS One 16:1–16. https://doi.org/10.1371/journal.pone.0234758

    Article  CAS  Google Scholar 

  14. Cowan AK (2006) Phospholipids as plant growth regulators. Plant Growth Regul 48:97–109. https://doi.org/10.1007/s10725-005-5481-7

    Article  CAS  Google Scholar 

  15. Mamode Cassim A, Gouguet P, Gronnier J et al (2019) Plant lipids: key players of plasma membrane organization and function. Prog Lipid Res 73:1–27. https://doi.org/10.1016/j.plipres.2018.11.002

    Article  CAS  PubMed  Google Scholar 

  16. Rubach M, Lang R, Seebach E et al (2012) Multi-parametric approach to identify coffee components that regulate mechanisms of gastric acid secretion. Mol Nutr Food Res 56:325–335. https://doi.org/10.1002/mnfr.201100453

    Article  CAS  PubMed  Google Scholar 

  17. Cordoba N, Fernandez-Alduenda M, Moreno FL, Ruiz Y (2020) Coffee extraction: a review of parameters and their influence on the physicochemical characteristics and flavour of coffee brews. Trends Food Sci Technol 96:45–60. https://doi.org/10.1016/j.tifs.2019.12.004

    Article  CAS  Google Scholar 

  18. Moeenfard M, Silva JA, Borges N et al (2015) Quantification of diterpenes and their palmitate esters in coffee brews by HPLC-DAD. Int J Food Prop 18:2284–2299. https://doi.org/10.1080/10942912.2014.933351

    Article  CAS  Google Scholar 

  19. Moeenfard M, Erny GL, Alves A (2016) Variability of some diterpene esters in coffee beverages as influenced by brewing procedures. J Food Sci Technol 53:3916–3927. https://doi.org/10.1007/s13197-016-2378-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cajka T, Fiehn O (2014) Comprehensive analysis of lipids in biological systems by liquid chromatography-mass spectrometry. Trends Anal Chem 61:192–206

    Article  CAS  Google Scholar 

  21. Tsugawa H, Ikeda K, Takahashi M et al (2020) A lipidome atlas in MS-DIAL 4. Nat Biotechnol 38:1159–1163. https://doi.org/10.1038/s41587-020-0531-2

    Article  CAS  PubMed  Google Scholar 

  22. Matyash V, Liebisch G, Kurzchalia TV et al (2008) Lipid extraction by methyl- tert -butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146. https://doi.org/10.1194/jlr.D700041-JLR200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Silva ACR, da Silva CC, Garrett R, Rezende CM (2020) Comprehensive lipid analysis of green Arabica coffee beans by LC-HRMS/MS. Food Res Int 137:109727. https://doi.org/10.1016/j.foodres.2020.109727

    Article  CAS  PubMed  Google Scholar 

  24. Broadhurst D, Goodacre R, Reinke SN et al (2018) Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14:1–17. https://doi.org/10.1007/s11306-018-1367-3

    Article  CAS  Google Scholar 

  25. Zalloua P, Kadar H, Hariri E et al (2019) Untargeted mass spectrometry lipidomics identifies correlation between serum sphingomyelins and plasma cholesterol. Lipids Health Dis 18:1–10. https://doi.org/10.1186/s12944-018-0948-5

    Article  Google Scholar 

  26. Gil A, Zhang W, Wolters JC et al (2018) One- vs two-phase extraction: re-evaluation of sample preparation procedures for untargeted lipidomics in plasma samples. Anal Bioanal Chem 410:5859–5870. https://doi.org/10.1007/s00216-018-1200-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Xu T, Hu C, Xuan Q, Xu G (2020) Recent advances in analytical strategies for mass spectrometry-based lipidomics. Anal Chim Acta 1137:156–169. https://doi.org/10.1016/j.aca.2020.09.060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murphy RC, Axelsen PH (2011) Mass spectrometric analysis of long-chain lipids. Mass Spectrom Rev 30:579–599. https://doi.org/10.1002/mas

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia M. Rezende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Silva, A.C.R., Garrett, R., Rezende, C.M. (2022). A Workflow for Lipid Annotation in Coffee Samples by Liquid Chromatography-Mass Spectrometry. In: Koolen, H. (eds) Mass Spectrometry for Food Analysis. Methods and Protocols in Food Science . Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2107-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2107-3_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2106-6

  • Online ISBN: 978-1-0716-2107-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics