Skip to main content
Log in

Assessment of a Sampling Plan Based on Visual Inspection for the Detection of Anisakid Larvae in Fresh Anchovies (Engraulis encrasicolus). A First Step Towards Official Validation?

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

The presence of anisakid larvae in fish is a public health issue, and effective risk management procedures are needed to avoid that heavily infected products reach the market. Currently, an official sampling plan for fresh fish defining sample size, inspection methods, and criteria to accept or reject the merchandise is lacking at the European and Italian level. In this study, we compared the visual inspection proposed by the sampling plan of the Lombardy Region (Italy) to the UV press method and to an optimized digestion procedure with the aim to assess its ability in detecting visible parasites. Thirty-one batches of Engraulis encrasicolus, each composed of ∼30 specimens, were collected and subsequently analyzed with the three techniques. The mean abundance (MA) was calculated after each procedure and compared on the basis of a threshold value. The results showed that the visual inspection performed similarly to the digestion method, with a sensitivity of 93 %, a specificity of 100 %, and an accuracy of 97 %. Overall, the comparison showed that, in the proposed sampling plan, the visual inspection is effective in rejecting unmarketable anchovies and in preventing the commercialization of unsafe products. This method is simple, less demanding than digestion in terms of time and equipment, and thus suitable as a standardized procedure to be routinely applied by food business operators. The hazard characterization, performed by sequencing the mtDNA cox2 gene, has identified the visible larvae as Anisakis pegreffii in 98 % of the cases, highlighting the zoonotic potential of the parasites found and the need for preventive measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams AM, Murrell KD, Cross JH (1997) Parasites of fish and risks to public health. Rev Sci Tech (Int Off Epizoot) 16:652–660

    Article  CAS  Google Scholar 

  • Anderson RC (1992) Nematode parasites of vertebrates: their development and transmission. CAB International, Cambridge

    Google Scholar 

  • Angelucci G, Meloni M, Merella P, Sardu F, Madeddu S, Marrosu R, Petza F, Salati F (2011) Prevalence of Anisakis spp. and Hysterothylacium spp. larvae in teleosts and cephalopods sampled from waters off Sardinia. J Food Prot 74:1769–1775

    Article  Google Scholar 

  • Alonso-Gomez A, Moreno-Ancillo A, Lopez-Serrano MC, Suarez-de-Parga JM, Daschner A, Caballero MT et al (2004) Anisakis simplex only provokes allergic symptoms when the worm parasitises the gastrointestinal tract. Parasitol Res 93:378–384

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic Local Alignment Search Tool. J Mol Biol 215:403–410

    Article  CAS  Google Scholar 

  • Armani A, Tinacci L, Xiong X, Titarenko E, Guidi A, Castigliego L (2014) Development of a simple and cost-effective bead-milling method for DNA extraction from fish muscles. Food Anal Methods 7:946–955

    Article  Google Scholar 

  • Audicana MT, Ansotegui IJ, Corres LF, Kennedy MW (2002) Anisakis simplex: dangerous—dead and alive? Trends Parasitol 18:20–25

    Article  Google Scholar 

  • Bernardi C, Gustinelli A, Fioravanti ML, Caffara M, Mattiucci S, Cattaneo P (2011) Prevalence and mean intensity of Anisakis simplex (sensu stricto) in European sea bass (Dicentrarchus labrax) from Northeast Atlantic Ocean. Int J Food Microbiol 148:55–59

    Article  Google Scholar 

  • Borges JN, Cuhna LFG, Santos HLC, Monteiro-Neto C, Santos CP (2012) Morphological and molecular diagnosis of anisakid nematode larvae from cutlassifish (Trichiurus lepturus) off the Coast of Rio de Janeiro, Brazil. PLoS One 7:e40447

    Article  CAS  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

    Article  CAS  Google Scholar 

  • Butt AA, Aldridge KE, Sander CV (2004) Infections related to the ingestion of seafood. Part II: parasitic infections and food safety. Lancet Infect Dis 4:294–300

    Article  Google Scholar 

  • Cavallero S, Magnabosco C, Civettini M, Boffo L, Mingarelli G, Buratti P, Giovanardi O, Fortuna CM, Arcangeli G (2015) Survey of Anisakis sp. and Hysterothylacium sp. in sardines and anchovies from the North Adriatic Sea. Int J Food Microbiol 200:18–21

    Article  CAS  Google Scholar 

  • Chai JY, Murrell KD, Lymbery AJ (2005) Fish-borne parasitic zoonoses: status and issues. Int J Parasitol 35:1233–1254

    Article  Google Scholar 

  • Cipriani P, Smaldone G, Acerra V, D’Angelo L, Anastasio A, Bellisario B, Palma G, Nascetti G, Mattiucci S (2015) Genetic identification and distribution of the parasitic larvae of Anisakis pegreffii and Anisakis simplex (ss) in European hake Merluccius merluccius from the Tyrrhenian Sea and Spanish Atlantic Coast: implications for food safety. Int J Food Microbiol 198:1–8

    Article  Google Scholar 

  • Circular Letter VS8/C790/94 of the Lombardy Region

  • Circular (1997) n. 1 of Liguria Region

  • Codex Alimentarius Commission (1969) Codex sampling plans for prepackaged foods. CODEX STAN 233–1969. Available at: http://down.40777.cn/stardard/10/CODEX%20STAN%20233-1969%20CODEX%20SAMPLING%20PLANS%20FOR%20PREPACKAGED%20FOODS%20%28AQL%206.5%29.pdf Accessed 14/05/2015

  • Codex Alimentarius Commission (1971) Report of the eighth session of the joint FAO/WHO Codex Alimentarius Commission: recommended international standard for quick frozen filet of cod and haddock. CAC/RS-50-1971. Available at: http://www.fao.org/docrep/meeting/005/c0531e/C0531E09.htm Accessed 16/02/2015

  • Codex Alimentarius Commission (1989) Codex standard for quick frozen blocks of fish fillet, minced fish flesh and mixtures of fillets and minced fish flesh. CODEX STAN 165–1989. Available at: http://www.codexalimentarius.org/standards/list-of-standards/ Accessed 09/06/2015

  • Codex Alimentarius Commission (2004) Standard for salted Atlantic herring and salted sprat CODEX STAN 244–2004 Available at: http://www.codexalimentarius.org/standards/list-of-standards/ Accessed 09/06/2015

  • Commission Decision (EEC) (1993) No 140 Laying down the detailed rules relating to the visual inspection (or the purpose of detecting parasites in fishery products). OJEC L56:42

  • Commission Regulation (EC) (2005) No 2074/2005 Laying down implementing measures for certain products under regulation (EC) No. 853/2004 of the European parliament and of the council and for the organisation of official control under regulation (EC) No. 854/2004 of the European parliament and of the council and regulation (EC) No. 882/2004 of the European parliament and of the council, derogating from regulation (EC) No. 852/2004 of the European parliament and of the council and amending regulations (EC) No. 853/2004 and (EC) No. 854/2004. OJEU L338:27–59

  • Commission Regulation (EC) (2005) No 2075/2005 Laying down specific rules on official controls for Trichinella in meat. OJEU L338:60

  • Commission Regulation (EU) (2011) No 1276/2011 amending Annex III to regulation (EC) No 853/2004 of the European parliament and of the council as regards the treatment to kill viable parasites in fishery products for human consumption. OJEU L327:39–41

  • Council Regulation (EC) (1996) No 2406/96 Laying down common marketing standards for certain fishery products. OJEC L334:1–15

  • Daschner A, Alonso-Gomez A, Cabanas R, Suarez-de-Parga JM, Lopez-Serrano MC (2000) Gastroallergic anisakiasis: borderline between food allergy and parasitic disease: clinical and allergologic evaluation of 20 patients with confirmed acute parasitism by Anisakis simplex. J Allergy Clin Immunol 105:176–181

    Article  CAS  Google Scholar 

  • D’Amico P, Malandra R, Costanzo F, Castigliego L, Guidi A, Gianfaldoni D, Armani A (2014) Evolution of the Anisakis risk management in the European and Italian context. Food Res Int 64:348–362

    Article  Google Scholar 

  • Dominguez-Ortega J, Alonso-Llamazares A, Rodriguez L, Chamorro M, Robledo T, Bartolome JM et al (2001) Anaphylaxis due to hypersensitivity to Anisakis simplex. Int Arch Allergy Immunol 125:86–88

  • EFSA (2010) Scientific opinion on risk assessment of parasites in fishery products. EFSA Journal 8:1543 Available at: http://www.efsa.europa.eu/it/search/doc/1543.pdf Accessed 10/05/2015

  • Fagerholm HP (1991) Systematic implications of male caudal morphology in ascaridoid nematode parasites. Syst Parasitol 19:215–229

    Article  Google Scholar 

  • Fraulo P, Morena C, Costa A (2014) Recovery of anisakid larvae by means of chloro-peptic digestion and proposal of the method for the official control. Acta Parasitol 59:629–634

    Article  Google Scholar 

  • Huang W (1990) Methods for detecting anisakid larvae in marine fish. Possibilities of application to the inspection of fish sold in the Paris Region. Recueil de Médecine Vétérinaire 166:895–900

    Google Scholar 

  • ISMEA (2013) Il settore ittico in Italia. Check-up – 2013. Available at: http://www.ismea.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/8845 Accessed 20/04/2015

  • Karl H, Leinemann M (1993) A fast and quantitative detection method for nematodes in fish fillets and fishery products. Arch Leb 44:124–125

    Google Scholar 

  • Levsen A, Lunestad BT, Berland B (2005) Low detection efficiency of candling as a commonly recommended inspection method for nematode larvae in the flesh of pelagic fish. J Food Prot 68:828–832

    Google Scholar 

  • Lima dos Santos CAM, Howgate P (2011) Fishborne zoonotic parasites and aquaculture: a review. Aquaculture 318:253–261

    Article  Google Scholar 

  • Llarena-Reino M, González ÁF, Vello C, Outeiriño L, Pascual S (2012) The accuracy of visual inspection for preventing risk of Anisakis spp. infection in unprocessed fish. Food Control 23:54–58

    Article  Google Scholar 

  • Llarena-Reino M, Piñeiro C, Antonio J, Outeriño L, Vello C, González AF, Pascual S (2013a) Optimization of the pepsin digestion method for anisakids inspection in the fishing industry. Vet Parasitol 191:276–293

    Article  CAS  Google Scholar 

  • Llarena-Reino M, Abollo E, Pascual S (2013b) A scoring system approach for the parasite predictive assessment of fish lots: a proof of concept with anisakids. Foodborne Pathog Dis 10:1067–1074

    Article  Google Scholar 

  • Lymbery AJ, Cheah FY (2007) Anisakid nematodes and anisakiasis. In: Murrell KD, Fried B (eds) Food-borne parasitic zoonoses. Springer, New York, pp 185–206

    Chapter  Google Scholar 

  • Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host-parasite co-evolutionary processes. Adv Parasitol 66:47–148

    Article  Google Scholar 

  • Mattiucci S, Fazii P, De Rosa A, Paoletti M, Megna AS, Glielmo A, De Angelis M, Costa A, Meucci C, Calvaruso V, Sorrentini I, Palma G, Bruschi F, Nascetti G (2013) Anisakiasis and gastroallergic reactions associated with Anisakis pegreffii infection, Italy. Emerg Infect Dis 19:496–499

    Article  Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:20–78

    Article  CAS  Google Scholar 

  • Mladineo I, Poljak V (2013) Ecology and genetic structure of zoonotic Anisakis spp. from adriatic commercial fish species. Appl Environ Microbiol 80:1281–1290

    Article  Google Scholar 

  • Murata R, Suzuki J, Sadamasu K, Kai A (2011) Morphological and molecular characterization of Anisakis larvae (Nematoda: Anisakidae) in Beryx splendens from Japanese waters. Parasitol Int 60:193–198

  • Nadler AS, Hudspeth DSS (2000) Phylogeny of the Ascaridoidea (Nematoda: Ascaridida) based on three genes and morphology: hypotheses of structural and sequence evolution. J Parasitol 86:380–393

    Article  CAS  Google Scholar 

  • Nieuwenhuizen N, Lopata AL, Jeebhay MF, De’Broski RH, Robins TG, Brombacher F (2006) Exposure to the fish parasite Anisakis causes allergic airway hyperreactivity and dermatitis. J Allergy Clin Immunol 117:1098–1105

  • Nieuwenhuizen NE, Lopata AL (2013) Anisakis—a food-borne parasite that triggers allergic host defences. Int J Parasitol 43:1047–1057

    Article  CAS  Google Scholar 

  • Pardo-Gandarillas MC, Lohrmann KB, Valdivia AL, Ibáñez CM (2009) First record of parasites of Dosidicus gigas (d’Orbigny, 1835) (Cephalopoda: Ommastrephidae) from the Humboldt current system off Chile. Rev Biol Mar Oceanogr 44:397–408

    Article  Google Scholar 

  • Piras MC, Tedde T, Garippa G, Virgilio S, Sanna D, Farjallah S, Merella P (2014) Molecular and epidemiological data on Anisakis spp. (Nematoda: Anisakidae) in commercial fish caught off northern Sardinia (western Mediterranean Sea). Vet Parasitol 203:237–240

    Article  CAS  Google Scholar 

  • Regulation (EC) (2002) No 178 of the European parliament and of the council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European food safety authority and laying down procedures in matters of food safety. OJEC L31:1–24

  • Regulation (EC) (2004) No 852 of the European parliament and of the council of 29 April 2004 on the hygiene of foodstuffs. OJEU L139:1

  • Regulation (EC) (2004) No 853 of the European parliament and of the council of 29 April 2004 laying down specific hygiene rules for on the hygiene of foodstuffs. OJEU L139:55

  • Rello FJ, Adroher FJ, Benitez R, Valero A (2009) The fishing area as a possible indicator of the infection by anisakids in anchovies (Engraulis encrasicolus) from southwestern Europe. Int J Food Microbiol 129:277–281

    Article  Google Scholar 

  • Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232

    Article  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  Google Scholar 

  • SANCO (2013) 10137/2013-rev1 guidance on the term ‘obviously contaminated’ in relation to parasites in fishery products. Working document SANCO/10137/2013-rev1. Available at: http://multimedia.food.gov.uk/multimedia/pdfs/obviouslycontaminated. Accessed 16/04/2015

  • Shamsi S, Eisenbarth A, Saptarshi S, Beveridge I, Gasser RB, Lopata AL (2011) Occurrence and abundance of anisakid nematode larvae in five species of fish from southern Australian waters. Parasitol Res 108:927–934

    Article  Google Scholar 

  • Shamsi S, Gasser R, Beveridge I (2013) Description and genetic characterisation of Hysterothylacium (Nematoda: Raphidascarididae) larvae parasitic in Australian marine fishes. Parasitol Int 62:320–328

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  Google Scholar 

  • Yagi K, Nagasawa K, Ishikura H, Nagasawa A, Sato N, Kikuchi K, Ishikura H (1996) Female worm Hysterothylacium aduncum excreted from human: a case report. Jpn J Parasitol 45:12–23

    Google Scholar 

  • Regulation (EU) (2011) No 1169 of the European parliament and of the council of 25 October 2011 on the provision of food information to consumers, amending regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European parliament and of the council, and repealing commission directive 87/250/EEC, council directive 90/496/EEC, commission directive 1999/10/EC, directive 2000/13/EC of the European parliament and of the council, commission directives 2002/67/EC and 2008/5/EC and commission regulation (EC) No 608/2004. OJEU L304:18

Download references

Compliance with Ethical Standards

Funding

The research was performed with funds granted from the University of Pisa.

Conflict of Interest

Lisa Guardone declares that she has no conflict of interest. Renato Malandra declares that he has no conflict of interest. Francesco Costanzo declares that he has no conflict of interest. Lorenzo Castigliego declares that he has no conflict of interest. Lara Tinacci declares that she has no conflict of interest. Daniela Gianfaldoni declares that she has no conflict of interest. Alessandra Guidi declares that she has no conflict of interest. Andrea Armani declares that he has no conflict of interest. This article does not contain any study with human or animal subjects. In particular, the fish included in the present study were intended for human consumption and they were bought at the wholesale market of Milan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Armani.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig. 1SM

Neighbour-joining (NJ) tree obtained using 622 mtDNA cox2 gene sequences (576 bp) of the Anisakis spp. larvae found in this study (613) and the reference sequences (9) retrieved from Genbank. Bootstrap values >70 %, obtained from 2000 replications using the Kimura 2-parameter genetic distance are shown in the tree. (TIFF 269 kb)

High Resolution (GIF 80 kb)

Table 1SM

Sampling for the visual inspection to detect Anisakis larvae in fish batches, according to the Circular Letter VS8/C790/94 of the Lombardy region (adapted and published in D’Amico et al. 2014). (DOC 60 kb)

Table 2SM

Molecular results of the BLAST analysis performed on a fragment of ∼582 bp of the cox2 gene. (DOC 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guardone, L., Malandra, R., Costanzo, F. et al. Assessment of a Sampling Plan Based on Visual Inspection for the Detection of Anisakid Larvae in Fresh Anchovies (Engraulis encrasicolus). A First Step Towards Official Validation?. Food Anal. Methods 9, 1418–1427 (2016). https://doi.org/10.1007/s12161-015-0316-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-015-0316-2

Keywords

Navigation