Skip to main content

Advertisement

Log in

Simple and Rapid Amperometric Monitoring of Hydrogen Peroxide at Hemoglobin-Modified Pencil Lead Electrode as a Novel Biosensor: Application to the Analysis of Honey Sample

  • Published:
Food Analytical Methods Aims and scope Submit manuscript

Abstract

This paper describes the use of a pencil lead electrode (PLE) covered by hemoglobin (Hb) through a simple and rapid electroless method for the electroreduction of hydrogen peroxide. Some thermodynamic and kinetic parameters such as the number of electrons involved in the rate determining step, n α , transfer coefficient, α, and the total electrons (n) involved in hydrogen peroxide reduction were determined. By attention to the findings, the possible mechanism for the H2O2 reduction at Hb/PLE was suggested. Also, the catalytic rate constant of the electrochemical process k and diffusion coefficient of hydrogen peroxide D were determined. The mean values obtained are 41.9 M−1 s−1 and 1.76 × 10−6 cm2s−1, respectively.

Finally, the ability of the electrode for the determination of hydrogen peroxide was investigated. In optimum conditions, the hydrodynamic amperometry was used for the determination of H2O2 at μM concentration level. It is found that the calibration graph is linear in the H2O2 concentration range 5 × 10−6–245 × 10−6 mol L−1 with correlation coefficient of 0.999. The detection limit of the method was about 1 × 10−6 mol L−1. This biosensor was successfully used for the determination of hydrogen peroxide in the tap water and honey samples using amperometric method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Alipour E, Majidi MR, Saadatirad A, Golabi SM, Alizadeh AM (2013) Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode. Electrochim Acta 91:36–42

    Article  CAS  Google Scholar 

  • Alipour E, Pournaghi-Azar MH, Parvizi M, Golabi SM, Hejazi MS (2011) Electrochemical detection and discrimination of single copy gene target DNA in non-amplified genomic DNA. Electrochim Acta 56:1925–1931

    Article  CAS  Google Scholar 

  • Allen KL, Molan PC, Reid GM (1991) A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol 43:817–822

    Article  CAS  Google Scholar 

  • Baghayeri M, Nazarzadeh Zare E, Namadchian M (2013) Direct electrochemistry and electrocatalysis of hemoglobin immobilized on biocompatible poly (styrene-alternative-maleic acid)/functionalized multi-wall carbon nanotubes blends. Sensors Actuators B 188:227–234

    Article  CAS  Google Scholar 

  • Bang LM, Buntting C, Molan P (2003) The effect of dilution on the rate of hydrogen peroxide production in honey and its implications for wound healing. J Altern Complement Med 9:267–273

    Article  Google Scholar 

  • Bard AJ, Faulkner IR (2001) Electrochemical methods, fundamentals and applications. Wiley, New York

    Google Scholar 

  • Djozan D, Baheri T, Pournaghi-Azar MH (2007) Development of electro solid-phase microextraction and application to methamphetamine analysis. Chromatographia 65:45–50

    Article  CAS  Google Scholar 

  • Dossi N, Toniolo R, Pizzariello A, Impellizzieri F, Piccin E, Bontempelli G (2013) Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis 34:2085–2091

    Article  CAS  Google Scholar 

  • Erdem A, Papakonstantinou P, Murphy H (2006) Direct DNA hybridization at disposable graphite electrodes modified with carbon nanotubes. Anal Chem 78:6656–6659

    Article  CAS  Google Scholar 

  • Franchini RAA, Matos MAC, Colombara R, Matos RC (2008) Differential amperometric determination of hydrogen peroxide in honeys using flow-injection analysis with enzymatic reactor. Talanta 75:301–306

    Article  CAS  Google Scholar 

  • Galus Z (1994) Fundamentals of electrochemical analysis. Ellis Horwood, New York

    Google Scholar 

  • Gimeno MP, Mayoral MC, Andres JM (2013) A potentiometric titration for H2O2 determination in the presence of organic compounds. Anal Methods 5:1510–1514

    Article  CAS  Google Scholar 

  • Hejazi MS, Pournaghi-Azar MH, Alipour E, Karimi F (2008) Construction, electrochemically biosensing and discrimination of recombinant plasmid (pEThIL-2) on the basis of interleukine-2 DNA insert. Biosens Bioelectron 23:1588–1594

    Article  CAS  Google Scholar 

  • Jia J, Wang B, Wu A, Cheng G, Li Z, Dong S (2002) A method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to three-dimensional Sol–gel network. Anal Chem 74:2217–2223

    Article  CAS  Google Scholar 

  • Joseph JM, Destaillats H, Hung H, Hoffmann MR (2000) The sonochemical degradation of azobenzene and related azo dyes: rate enhancements via Fenton’s reactions. J Phys Chem A 104:301–307

    Article  CAS  Google Scholar 

  • Kauppinen JK, Moffatt DJ, Mantsch HH, Cameron DG (1981) Fourier self-deconvolution: a method for resolving intrinsically overlapped bands. Appl Spectrosc 35:271–276

    Article  CAS  Google Scholar 

  • Kricka LJ, Ji X, Thorpe GHG, Edwards B, Voyta B, Bronstein I (1996) Comparison of 5-hydroxy-2, 3-dihydrophthalazine-1, 4-dione, and luminol as co-substrates for detection of horseradish peroxidase in enhanced chemiluminescent reactions. J Immunoass 17:67–84

    Article  CAS  Google Scholar 

  • Kulys J, Wang L, Maksimoviene A (1993) l-Lactate oxidase electrode based on methylene green and carbon paste. Anal Chim Acta 274:53–58

    Article  CAS  Google Scholar 

  • Lai GS, Zhang HL, Han DY (2008) A novel hydrogen peroxide biosensor based on hemoglobin immobilized on magnetic chitosan microspheres modified electrode. Sensors Actuators B 129:497–503

    Article  CAS  Google Scholar 

  • Lei CX, Hu SQ, Shen GL, Yu RQ (2003) Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide. Talanta 59:981–988

    Article  CAS  Google Scholar 

  • Li BL, Chen JR, Luo HQ, Li NB (2013) Electrocatalytic activity of polymer-stabilized silver nanoclusters for hydrogen peroxide reduction. J Electroanal Chem 706:64–68

    Article  CAS  Google Scholar 

  • Li J, Dasgupta PK (2000) Measurement of atmospheric hydrogen peroxide and hydroxymethyl hydroperoxide with a diffusion scrubber and light emitting diode-liquid core waveguide-based fluorometry. Anal Chem 72:5338–5347

    Article  CAS  Google Scholar 

  • Liu HH, Wan YQ, Zou GL (2006) Direct electrochemistry and electrochemical catalysis of immobilized hemoglobin in an ethanol–water mixture. Anal Bioanal Chem 385:1470–1476

    Article  CAS  Google Scholar 

  • Liu Y, Xu Q, Feng X, Zhu JJ, Hou W (2007) Immobilization of hemoglobin on SBA-15 applied to the electrocatalytic reduction of H2O2. Anal Bioanal Chem 387:1553–1559

    Article  CAS  Google Scholar 

  • Liu YG, Wei CB, Lv LL, Liu SH (2012) A hydrogen peroxide biosensor based on the direct electron transfer of hemoglobin in the nanosheets of exfoliated HNb3O8. J Solid State Electrochem 16:2211–2216

    Article  CAS  Google Scholar 

  • Majidi MR, Saadatirad A, Alipour E (2011) Voltammetric determination of hemoglobin using a pencil lead electrode. Electroanalysis 23:1984–1990

    Article  CAS  Google Scholar 

  • Majidi MR, Saadatirad A, Alipour E (2013) Pencil lead electrode modified with hemoglobin film as a novel biosensor for nitrite determination. Electroanalysis 25:1742–1750

    Article  CAS  Google Scholar 

  • Mandal P, Dey R, Chakraborty S (2012) Electrokinetics with “paper-and-pencil” devices. Lab Chip 12:4026–4028

    Article  CAS  Google Scholar 

  • Matsubara C, Kawamoto N, Takamura K (1992) Oxo [5,10,15,20-tetra (4-pyridyl) porphyrinato] titanium (iv): an ultra-high sensitivity spectrophotometric reagent for hydrogen peroxide. Analyst 117:1781–1784

    Article  CAS  Google Scholar 

  • Miao Y, Tan SN (2000) Amperometric hydrogen peroxide biosensor based on immobilization of peroxidase in chitosan matrix crosslinked with glutaraldehyde. Analyst 125:1591–1594

    Article  CAS  Google Scholar 

  • Mirica KA, Azzarelli JM, Weis JG, Schnorr JM, Swager TM (2013) Rapid prototyping of carbon based chemiresistive gas sensors on paper. PNAS 110:E3265–E3270

    Article  CAS  Google Scholar 

  • Morales A, Cespedes F, Munoz J, Martinez-Fabregas E, Alegret S (1996) Hydrogen peroxide amperometric biosensor based on a peroxidase-graphite-epoxy biocomposite. Anal Chim Acta 332:131–138

    Article  CAS  Google Scholar 

  • Nadzhafova OY, Zaitsev VN, Drozdova MV, Vaze A, Rusling JF (2004) Heme proteins sequestered in silica sol–gels using surfactants feature direct electron transfer and peroxidase activity. Electrochem Commun 6:205–209

    Article  CAS  Google Scholar 

  • Nassar AEF, Willis WS, Rusling JF (1995) Electron transfer from electrodes to myoglobin: Facilitated in surfactant films and blocked by adsorbed biomacromolecules. Anal Chem 67:2386–2392

    Article  CAS  Google Scholar 

  • Olasehinde EF, Makino S, Kondo H, Takeda K, Sakugawa H (2008) Application of Fenton reaction for nanomolar determination of hydrogen peroxide in seawater. Anal Chim Acta 627:270–276

    Article  CAS  Google Scholar 

  • Palaska P, Aritzoglou E, Girousi S (2007) Sensitive detection of cyclophosphamide using DNA-modified carbon paste, pencil graphite and hanging mercury drop electrodes. Talanta 72:1199–1206

    Article  CAS  Google Scholar 

  • Pournaghi-Azar MH, Ahour F, Pournaghi-Azar F (2010) Simple and rapid amperometric monitoring of hydrogen peroxide in salivary samples of dentistry patients exploiting its electro-reduction on the modified/palladized aluminum electrode as an improved electrocatalyst. Sensors Actuators B 145:334–339

    Article  CAS  Google Scholar 

  • Pournaghi-Azar MH, Alipour E, Zununi S, Froohandeh H, Hejazi MS (2008) Direct and rapid electrochemical biosensing of the human interleukin-2 DNA in unpurified polymerase chain reaction (PCR)-amplified real samples. Biosens Bioelectron 24:524–530

    Article  CAS  Google Scholar 

  • Ren L, Dong J, Cheng X, Xu J, Hu P (2013) Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite. Microchim Acta 180:1333–1340

    Article  CAS  Google Scholar 

  • Salimi A, Hallaj R, Soltanian S (2007) Immobilization of hemoglobin on electrodeposited cobalt–oxide nanoparticles: direct voltammetry and electrocatalytic activity. Biophys Chem 130:122–131

    Article  CAS  Google Scholar 

  • Salimi A, Sharifi E, Noorbakhsh A, Soltanian S (2006) Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide. Electrochem Commun 8:1499–1508

    Article  CAS  Google Scholar 

  • Song J, Xu J, Zhao P, Lu L, Bao J (2011) A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with nafion and activated nanocarbon. Microchim Acta 172:117–123

    Article  CAS  Google Scholar 

  • Song Y, Wang L, Ren C, Zhua G, Li Z (2006) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized in DNA films on a gold electrode. Sensors Actuators B 114:1001–1006

    Article  CAS  Google Scholar 

  • Song YP, Petty MC, Yarwood J, Feast WJ, Tsibouklis J, Mukherjee S (1992) Fourier transform infrared studies of molecular ordering and interactions in langmuir-blodgett films containing nitrostilbene and stearic acid. Langmuir 8:257–261

    Article  CAS  Google Scholar 

  • Sun A, Sheng Q, Zheng J (2012) A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in palladium nanoparticles/graphene–chitosan nanocomposite film. Appl Biochem Biotechnol 166:764–773

    Article  CAS  Google Scholar 

  • Tan XC, Zhang JL, Tan SW, Zhao DD, Huang ZW, Mi Y, Huang ZY (2009) Amperometric hydrogen peroxide biosensor based on immobilization of hemoglobin on a glassy carbon electrode modified with Fe3O4/chitosan core-shell microspheres. Sensors 9:6185–6199

    Article  CAS  Google Scholar 

  • Toniolo R, Geatti P, Bontempelli G, Schiavon G (2001) Amperometric monitoring of hydrogen peroxide in workplace atmospheres by electrodes supported on ion-exchange membranes. J Electroanal Chem 514:123–128

    Article  CAS  Google Scholar 

  • Vasiliou EG, Makarovska YM, Pneumatikos IA, Lolis NV, Kalogeratos EA, Papadakisc EK, Georgiou CA (2007) Hydrogen peroxide assessment in exhaled breath condensate: condensing equipment-rapid flow injection chemiluminescence method. J Braz Chem Soc 5:1040–1047

    Article  Google Scholar 

  • Wang F, Han R, Liu G, Chen H, Ren T, Yang H, Wen Y (2013) Construction of polydopamine/silver nanoparticles multilayer film for hydrogen peroxide detection. J Electroanal Chem 706:102–107

    Article  CAS  Google Scholar 

  • Wang H, Guan R, Fan C, Zhu D, Li G (2002) A hydrogen peroxide biosensor based on the bioelectrocatalysis of hemoglobin incorporated in a kieselgubr film. Sensors Actuators B 84:214–218

    Article  CAS  Google Scholar 

  • Wang J, Kawde AN, Sahlin E (2000) Renewable pencil electrodes for highly sensitive stripping potentiometric measurements of DNA and RNA. Analyst 125:5–8

    Article  CAS  Google Scholar 

  • Wang Y, Tang M, Lin X, Gao F, Li M (2012) Sensor for hydrogen peroxide using a hemoglobin-modified glassy carbon electrode prepared by enhanced loading of silver nanoparticle onto carbon nanospheres via spontaneous polymerization of dopamine. Microchim Acta 176:405–410

    Article  CAS  Google Scholar 

  • Wang YH, Gu HY (2009) Hemoglobin co-immobilized with silver–silver oxide nanoparticles on a bare silver electrode for hydrogen peroxide electroanalysis. Microchim Acta 164:41–47

    Article  CAS  Google Scholar 

  • Weston RJ (2000) The contribution of catalase and other natural products to the antibacterial activity of honey: a review. Food Chem 71:235–239

    Article  CAS  Google Scholar 

  • Xiao Y, Ju HX, Chen HY (1999) Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolayer. Anal Chim Acta 391:73–82

    Article  CAS  Google Scholar 

  • Xu J, Liu C, Teng Y (2010) Direct electrochemistry and electrocatalysis of hydrogen peroxide using hemoglobin immobilized in hollow zirconium dioxide spheres and sodium alginate films. Microchim Acta 169:181–186

    Article  CAS  Google Scholar 

  • Xu J, Liu C, Wu Z (2011) Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film. Microchim Acta 172:425–430

    Article  CAS  Google Scholar 

  • Xu M, Cui L, Han R, Ai S (2012) Amperometric biosensor based on hemoglobin immobilized on Cu2S nanorods/nafion nanocomposite film for the determination of polyphenols. J Solid State Electrochem 16:2547–2554

    Article  CAS  Google Scholar 

  • Xu Y, Hu C, Hu S (2008) A hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin in Hb-Ag sol films. Sensors Actuators B 130:816–822

    Article  CAS  Google Scholar 

  • Xuan J, Jia XD, Jiang LP, Abdel-Halim ES, Zhu JJ (2012) Gold nanoparticle-assembled capsules and their application as hydrogen peroxide biosensor based on hemoglobin. Bioelectrochemistry 84:32–37

    Article  CAS  Google Scholar 

  • Yabuki S, Mizutani F, Hirata Y (2000) Hydrogen peroxide determination based on a glassy carbon electrode covered with polyion complex membrane containing peroxidase and mediator. Sensors Actuators B 65:49–51

    Article  CAS  Google Scholar 

  • Yagati AK, Lee T, Min J, Choi JW (2011) Amperometric sensor for hydrogen peroxide based on direct electron transfer of spinach ferredoxin on Au electrode. Bioelectrochemistry 80:169–174

    Article  CAS  Google Scholar 

  • Yang G, Yuan R, Chai YQ (2008) A high-sensitive amperometric hydrogen peroxide biosensor based on the immobilization of hemoglobin on gold colloid/l-cysteine/gold colloid/nanoparticles Pt-chitosan composite film-modified platinum disk electrode. Colloids Surf B: Biointerfaces 61:93–100

    Article  CAS  Google Scholar 

  • Yu J, Ju H (2003) Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol–gel film. Anal Chim Acta 486:209–216

    Article  CAS  Google Scholar 

  • Zhang Y, Cao H, Fei W, Cui D, Jia N (2012) Direct electrochemistry and electrocatalysis of hemoglobin immobilized into halloysite nanotubes/room temperature ionic liquid composite film. Sensors Actuators B 162:143–148

    Article  CAS  Google Scholar 

  • Zhou Y, Hu N, Zeng Y, Rusling JF (2002) Heme protein-clay films: direct electrochemistry and electrochemical catalysis. Langmuir 18:211–219

    Article  Google Scholar 

Download references

Conflict of Interest

Mir Reza Majidi declares that he has no conflict of interest. Mohammad Hossein Pournaghi-Azar declares that he has no conflict of interest. Afsaneh Saadatirad declares that she has no conflict of interest. Esmaeel Alipour declares that he has no conflict of interest.

Compliance with Ethics Requirements

This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Reza Majidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, M.R., Pournaghi-Azar, M.H., Saadatirad, A. et al. Simple and Rapid Amperometric Monitoring of Hydrogen Peroxide at Hemoglobin-Modified Pencil Lead Electrode as a Novel Biosensor: Application to the Analysis of Honey Sample. Food Anal. Methods 8, 1067–1077 (2015). https://doi.org/10.1007/s12161-014-9988-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12161-014-9988-2

Keywords

Navigation