Skip to main content
Log in

Synthesis and Pyrolysis of Selected Metal Levulinates

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Eight metal levulinate salts of Mg2+, Ca2+, Sr2+, Ba2+, La3+, Fe3+, Cu2+, and Zn2+ were prepared by reacting the corresponding hydroxides with equivalent amounts of levulinic acid in water. Pyrolysis of the salts at 350 °C for 3.0 min produces colorless liquid pyrolysate oils in yields of 100–567 g kg−1 dry salt. The pyrolysates were analyzed by 1H NMR and GC-MS. The group II metal levulinates produced pyrolysate oils of similar composition with 3-methyl-2-cyclopentenone, 2,3-dimethyl-2-cyclopentenone, and γ-valerolactone as the major compounds. The La3+ and Fe3+ levulinates produced pyrolysates with 3-methyl-2-cyclopentenone, 2,3-dimethyl-2-cyclopentenone, γ-valerolactone, and levulinic acid as the major compounds. The Cu2+ and Zn2+ salts produced pyrolysates with levulinic acid as the major compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Amarasekara AS (2013) Handbook of cellulosic ethanol. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  2. Dutta S, Pal S (2014) Promises in direct conversion of cellulose and lignocellulosic biomass to chemicals and fuels: combined solvent–nanocatalysis approach for biorefinary. Biomass Bioenergy 62:182–197

    Article  CAS  Google Scholar 

  3. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chemie Int Ed 46(38):7164–7183

    Article  CAS  Google Scholar 

  4. Alamillo R, Tucker M, Chia M, Pagán-Torres Y, Dumesic J (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem 14(5):1413–1419

    Article  CAS  Google Scholar 

  5. Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem Rev 106(9):4044–4098

    Article  CAS  PubMed  Google Scholar 

  6. Serrano-Ruiz JC, Pineda A, Balu AM, Luque R, Campelo JM, Romero AA, Ramos-Fernández JM (2012) Catalytic transformations of biomass-derived acids into advanced biofuels. Catal Today 195(1):162–168

    Article  CAS  Google Scholar 

  7. Gürbüz EI, Alonso DM, Bond JQ, Dumesic JA (2011) Reactive extraction of levulinate esters and conversion to γ-Valerolactone for production of liquid fuels. ChemSusChem 4(3):357–361

    Article  PubMed  Google Scholar 

  8. Tang X, Zeng X, Li Z, Hu L, Sun Y, Liu S, Lei T, Lin L (2014) Production of γ-valerolactone from lignocellulosic biomass for sustainable fuels and chemicals supply. Renew Sust Energy Rev 40:608–620

    Article  CAS  Google Scholar 

  9. Amarasekara AS, Hasan MA (2015) Pd/C catalyzed conversion of levulinic acid to γ-valerolactone using alcohol as a hydrogen donor under microwave conditions. Catal Commun 60:5–7

    Article  CAS  Google Scholar 

  10. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12(4):539–554

    Article  CAS  Google Scholar 

  11. Friedel C (1858) Ueber s.g. gemischte Acetone. Justus Liebigs Ann Chem 108:122–123

    Article  Google Scholar 

  12. Lee C, Spinks J (1953) The mechanism of the ketonic pyrolysis of calcium carboxylates. J Org Chem 18(9):1079–1086

    Article  CAS  Google Scholar 

  13. Hites RA, Biemann K (1972) Mechanism of ketonic decarboxylation. Pyrolysis of calcium decanoate. J Am Chem Soc 94(16):5772–5777

    Article  CAS  Google Scholar 

  14. Renz M (2005) Ketonization of carboxylic acids by decarboxylation: mechanism and scope. Eur J Org Chem 2005(6):979–988

    Article  Google Scholar 

  15. Chaudhuri NR, Mitra S, Pathak G (1979) Thermal investigations of the calcium salts of monocarboxylic aliphatic fatty acids. J Therm Anal Calorim 16(1):13–26

    Article  CAS  Google Scholar 

  16. Akanni MS, Okoh EK, Burrows HD, Ellis HA (1992) The thermal behaviour of divalent and higher valent metal soaps: a review. Thermochim Acta 208:1–41

    Article  CAS  Google Scholar 

  17. Grivel JC, Zhao Y, Tang X, Pallewatta PGPA, Watenphul A, Zimmermann M (2013) Thermal decomposition of lanthanum(III) butyrate in argon atmosphere. Thermochim Acta 566:112–117

    Article  CAS  Google Scholar 

  18. Grivel JC (2013) Thermal decomposition of yttrium(III) propionate and butyrate. J Anal Appl Pyrolysis 101:185–192

    Article  CAS  Google Scholar 

  19. Grivel JC, Zhao Y, Tang X, Pallewatta PGPA, Watenphul A, Zimmermann M (2014) Thermal decomposition of yttrium(III) valerate in argon. J Anal Appl Pyrolysis 106:125–131

    Article  CAS  Google Scholar 

  20. Nasui M, Petrisor T Jr, Mos RB, Mesaros A, Varga RA, Vasile BS, Ristoiu T, Ciontea L, Petrisor T (2014) Synthesis, crystal structure and thermal decomposition kinetics of yttrium propionate. J Anal Appl Pyrolysis 106:92–98

    Article  CAS  Google Scholar 

  21. Schwartz TJ, van Heiningen AR, Wheeler MC (2010) Energy densification of levulinic acid by thermal deoxygenation. Green Chem 12(8):1353–1356

    Article  CAS  Google Scholar 

  22. Case PA, van Heiningen AR, Wheeler MC (2012) Liquid hydrocarbon fuels from cellulosic feedstocks via thermal deoxygenation of levulinic acid and formic acid salt mixtures. Green Chem 14(1):85–89

    Article  CAS  Google Scholar 

  23. Amarasekara AS, Wiredu B, Edwards DLN (2015) γ-Valerolactone from pyrolysis of calcium salts of levulinic-formic acid mixtures derived from cellulose. Biomass Bioenergy 72:39–44

    Article  CAS  Google Scholar 

  24. Amarasekara AS, Wiredu B (2014) Single reactor conversion of corn stover biomass to C5–C20 furanic biocrude oil using sulfonic acid functionalized Brönsted acidic ionic liquid catalysts. Biomass Convers Bioref 4(2):149–155

    Article  CAS  Google Scholar 

  25. Amarasekara AS, Wiredu B (2014) Acidic ionic liquid catalyzed one-pot conversion of cellulose to ethyl levulinate and levulinic acid in ethanol-water solvent system. Bioenerg Res 7(4):1237–1243

    Article  CAS  Google Scholar 

  26. Amarasekara AS, Wiredu B (2012) Aryl sulfonic acid catalyzed hydrolysis of cellulose in water. Appl Catal A Gen 417–418:259–262

    Article  Google Scholar 

  27. Kølvraa S, Gregersen N, Christensen E, Grøn I (1977) Calcium levulinate medication. A pitfall in the diagnosis of organic acidurias. Clin Chim Acta 77(2):197–201

    Article  PubMed  Google Scholar 

  28. Linder PW, Torrington RG, Seemann UA (1983) Formation constants for the complexes of levulinate and acetate with manganese(II), cobalt(II), nickel(II), copper(II), zinc(II) and hydrogen ions. Talanta 30(4):295–298

    Article  CAS  PubMed  Google Scholar 

  29. Zubkowski JD, Washington D, Njoroge N, Valente EJ, Cannon T, Parks CD, Berdahl P, Perry DL (1997) Formation, magnetic properties and structures of copper(II) levulinates. Polyhedron 16(14):2341–2351

    Article  CAS  Google Scholar 

  30. Gopalakrishnan J, Patel C (1967) Dimeric copper (II) levulinate hydrate. Inorg Chem 6(11):2111–2113

    Article  CAS  Google Scholar 

  31. Widdifield CM, Moudrakovski I, Bryce DL (2014) Calcium-43 chemical shift and electric field gradient tensor interplay: a sensitive probe of structure, polymorphism, and hydration. Phys Chem Chem Phys 16(26):13340–13359

    Article  CAS  PubMed  Google Scholar 

  32. Beis S, Mukkamala S, Hill N, Joseph J, Baker C, Jensen B, Stemmler E, Wheeler C, Frederick B, Van Heiningen A (2010) Fast pyrolysis of lignins. BioResources 5(3):1408–1424

    CAS  Google Scholar 

  33. Wang S, Lin H, Ru B, Sun W, Wang Y, Luo Z (2014) Comparison of the pyrolysis behavior of pyrolytic lignin and milled wood lignin by using TG–FTIR analysis. J Anal Appl Pyrolysis 108:78–85

    Article  CAS  Google Scholar 

  34. Chutia RS, Kataki R, Bhaskar T (2014) Characterization of liquid and solid product from pyrolysis of Pongamia glabra deoiled cake. Bioresour Technol 165:336–342

    Article  CAS  PubMed  Google Scholar 

  35. Volli V, Singh RK (2012) Production of bio-oil from de-oiled cakes by thermal pyrolysis. Fuel 96:579–585

    Article  CAS  Google Scholar 

  36. Özbay N, Pütün AE, Pütün E (2001) Structural analysis of bio-oils from pyrolysis and steam pyrolysis of cottonseed cake. J Anal Appl Pyrolysis 60(1):89–101

    Article  Google Scholar 

  37. Clososki GC, Costa CE, Missio LJ, Cass QB, Comasseto JV (2004) Enzymatic resolution of 5‐phenylselanyltetrahydro‐2‐furanone. enantioselective preparation of (r) and (s)‐γ‐valerolactone. Synth Commun 34(5):817–828

    Article  CAS  Google Scholar 

  38. Rosini G, Ballini R, Sorrenti P (1983) A new route to 1,4 -diketones and its application to (z)-jasmone and dihydrojasmone synthesis. Tetrahedron 39(24):4127–4132

    Article  CAS  Google Scholar 

  39. Judd MD, Plunkett BA, Pope MI (1974) The thermal decomposition of calcium, sodium, silver and copper(II) acetates. J Therm Anal 6(5):555–563

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank NSF grants CBET-0929970, CBET-1336469, HRD-1036593, and USDA grant CBG-2010-38821-21569 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda S. Amarasekara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 7201 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amarasekara, A.S., Sterling-Wells, D.T. Synthesis and Pyrolysis of Selected Metal Levulinates. Bioenerg. Res. 8, 1956–1961 (2015). https://doi.org/10.1007/s12155-015-9616-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-015-9616-z

Keywords

Navigation