Skip to main content
Log in

Single reactor conversion of corn stover biomass to C5–C20 furanic biocrude oil using sulfonic acid functionalized Brönsted acidic ionic liquid catalysts

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

Cellulose (DP∼450) and dry corn stover powder were converted to furanic biocrude oils in a single reactor operation by heating with excess acetone in the presence of Brönsted acidic ionic liquid catalysts. Two Brönsted acidic ionic liquid catalysts, 1-(1-propylsulfonic)-3-methylimidazolium chloride (BAIL-1) and 1-(4-sulfonic-benzyl)-3-methylimidazolium chloride (BAIL-2), were compared for biocrude oil synthesis from cellulose and dry corn stover. Catalyst BAIL-1 showed slightly better activity in all experiments, where cellulose samples produced 52.9 mg biocrude oil/100 mg of cellulose, and corn stover produced 34.2 mg biocrude oil/100 mg of corn stover by heating at 120 °C for 3 h. Biocrude oil formed in the novel process is mainly a complex mixture of aldol condensation products of acetone with biomass-derived furans, furfural and 5-hydroxymethylfurfural.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Goettemoeller J GA (ed) (2007) Sustainable Ethanol: Biofuels, Biorefineries, Cellulosic Biomass, Flex-Fuel Vehicles, and Sustainable Farming for Energy Independence. p. 42. ISBN 978-0-9786293-0-4. Prairie Oak Publishing, Maryville, Missouri

  2. Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 86(11):2273–2282

    Article  Google Scholar 

  3. Isahak WNRW, Hisham MWM, Yarmo MA, Yun Hin TY (2012) A review on bio-oil production from biomass by using pyrolysis method. Renew Sust Energ Rev 16(8):5910–5923

    Article  Google Scholar 

  4. Xiu S, Shahbazi A (2012) Bio-oil production and upgrading research: a review. Renew Sust Energ Rev 16(7):4406–4414

    Article  Google Scholar 

  5. Jones CS, Mayfield SP (2012) Algae biofuels: versatility for the future of bioenergy. Curr Opin Biotech 23(3):346–351

    Article  Google Scholar 

  6. Spivey JJ, Egbebi A (2007) Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev 36(9):1514–1528

    Article  Google Scholar 

  7. Munasinghe PC, Khanal SK (2010) Biomass-derived syngas fermentation into biofuels: opportunities and challenges. Bioresource Technol 101(13):5013–5022

    Article  Google Scholar 

  8. Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels: a review. Renew Sust Energ Rev 15(9):4255–4273

    Article  Google Scholar 

  9. Swain PK, Das LM, Naik SN (2011) Biomass to liquid: a prospective challenge to research and development in 21st century. Renew Sust Energ Rev 15(9):4917–4933

    Article  Google Scholar 

  10. Chheda JN, Huber GW, Dumesic JA (2007) Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals. Angew Chem Int Ed 46(38):7164–7183

    Article  Google Scholar 

  11. Alamillo R, Tucker M, Chia M, Pagán-Torres Y, Dumesic J (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chem 14(5):1413–1419

    Article  Google Scholar 

  12. Serrano-Ruiz JC, Pineda A, Balu AM, Luque R, Campelo JM, Romero AA, Ramos-Fernández JM (2012) Catalytic transformations of biomass-derived acids into advanced biofuels. Catal Today 195(1):162–168

    Article  Google Scholar 

  13. Gürbüz EI, Alonso DM, Bond JQ, Dumesic JA (2011) Reactive extraction of levulinate esters and conversion to γ-Valerolactone for production of liquid fuels. ChemSusChem 4(3):357–361

    Article  Google Scholar 

  14. Alonso DM, Bond JQ, Serrano-Ruiz JC, Dumesic JA (2010) Production of liquid hydrocarbon transportation fuels by oligomerization of biomass-derived C9 alkenes. Green Chem 12(6):992–999

    Article  Google Scholar 

  15. Murat Sen S, Henao CA, Braden DJ, Dumesic JA, Maravelias CT (2012) Catalytic conversion of lignocellulosic biomass to fuels: process development and technoeconomic evaluation. Chem Eng Sci 67(1):57–67

    Article  Google Scholar 

  16. Viswanadham N, Saxena SK (2013) Enhanced performance of nano-crystalline ZSM-5 in acetone to gasoline (ATG) reaction. Fuel 105:490–495

    Article  Google Scholar 

  17. West RM, Liu ZY, Peter M, Gärtner CA, Dumesic JA (2008) Carbon-carbon bond formation for biomass-derived furfurals and ketones by aldol condensation in a biphasic system. J Molecul Catal A: Chem 296(1–2):18–27

    Article  Google Scholar 

  18. Chheda JN, Dumesic JA (2007) An overview of dehydration, aldol-condensation and hydrogenation processes for production of liquid alkanes from biomass-derived carbohydrates. Catal Today 123(1–4):59–70

    Article  Google Scholar 

  19. Barrett CJ, Chheda JN, Huber GW, Dumesic JA (2006) Single-reactor process for sequential aldol-condensation and hydrogenation of biomass-derived compounds in water. Appl Catal B Environ 66(1–2):111–118

    Article  Google Scholar 

  20. Sádaba I, Ojeda M, Mariscal R, Fierro JLG, Granados ML (2011) Catalytic and structural properties of co-precipitated Mg-Zr mixed oxides for furfural valorization via aqueous aldol condensation with acetone. Appl Catal B Environ 101(3–4):638–648

    Article  Google Scholar 

  21. Sádaba I, Ojeda M, Mariscal R, Richards R, Granados ML (2011) Mg-Zr mixed oxides for aqueous aldol condensation of furfural with acetone: effect of preparation method and activation temperature. Catal Today 167(1):77–83

    Article  Google Scholar 

  22. Shen W, Tompsett GA, Hammond KD, Xing R, Dogan F, Grey CP, Conner WC Jr, Auerbach SM, Huber GW (2011) Liquid phase aldol condensation reactions with MgO-ZrO2 and shape-selective nitrogen-substituted NaY. Appl Catal A Gen 392(1–2):57–68

    Article  Google Scholar 

  23. Faba L, Díaz E, Ordóñez S (2011) Performance of bifunctional Pd/MxNyO (M = Mg, Ca; N = Zr, Al) catalysts for aldolization-hydrogenation of furfural-acetone mixtures. Catal Today 164(1):451–456

    Article  Google Scholar 

  24. Ordóñez S, Díaz E, León M, Faba L (2011) Hydrotalcite-derived mixed oxides as catalysts for different C-C bond formation reactions from bioorganic materials. Catal Today 167(1):71–76

    Article  Google Scholar 

  25. Matson TD, Barta K, Iretskii AV, Ford PC (2011) One-pot catalytic conversion of cellulose and of woody biomass solids to liquid fuels. J Am Chem Soc 133(35):14090–14097

    Article  Google Scholar 

  26. Amarasekara AS, Owereh OS (2009) Hydrolysis and decomposition of cellulose in Bronsted acidic ionic liquids under mild conditions. Ind Eng Chem Res 48(22):10152–10155

    Article  Google Scholar 

  27. Amarasekara AS, Shanbhag P (2013) Degradation of untreated switchgrass biomass into reducing sugars in 1-(alkylsulfonic)-3-methylimidazolium Brönsted acidic ionic liquid medium under mild conditions. Bioenerg Res 6(2):719–724

    Article  Google Scholar 

  28. Amarasekara AS, Owereh OS (2010) Synthesis of a sulfonic acid functionalized acidic ionic liquid modified silica catalyst and applications in the hydrolysis of cellulose. Catal Commun 11(13):1072–1075

    Article  Google Scholar 

  29. Amarasekara AS, Wiredu B (2012) A comparison of dilute aqueous p-toluenesulfonic and sulfuric acid pretreatments and saccharification of corn stover at moderate temperatures and pressures. Bioresource Technol 125:114–118

    Article  Google Scholar 

  30. Amarasekara AS, Wiredu B (2012) Aryl sulfonic acid catalyzed hydrolysis of cellulose in water. Appl Catal A Gen 417–418:259–262

    Article  Google Scholar 

  31. Amarasekara AS, Wiredu B (2011) Degradation of cellulose in dilute aqueous solutions of acidic ionic liquid 1-(1-propylsulfonic)-3-methylimidazolium chloride, and p-toluenesulfonic acid at moderate temperatures and pressures. Ind Eng Chem Res 50(21):12276–12280

    Article  Google Scholar 

  32. Yang Q, Wei Z, Xing H, Ren Q (2008) Brönsted acidic ionic liquids as novel catalysts for the hydrolyzation of soybean isoflavone glycosides. Catal Commun 9(6):1307–1311

    Article  Google Scholar 

  33. Jiang F, Zhu Q, Ma D, Liu X, Han X (2011) Direct conversion and NMR observation of cellulose to glucose and 5-hydroxymethylfurfural (HMF) catalyzed by the acidic ionic liquids. J Molecul Catal A: Chem 334(1–2):8–12

    Article  Google Scholar 

  34. Biaglow AI, Sepa J, Gorte RJ, White D (1995) A 13C NMR study of the condensation chemistry of acetone and acetaldehyde adsorbed at the Brønsted acid sites in H-ZSM-5. J Catal 151(2):373–384

    Article  Google Scholar 

  35. Tao F, Song H, Yang J, Chou L (2011) Catalytic hydrolysis of cellulose into furans in MnCl2-ionic liquid system. Carbohyd Polym 85(2):363–368

    Article  Google Scholar 

  36. Long J, Guo B, Li X, Jiang Y, Wang F, Tsang SC, Wang L, Yu KMK (2011) One step catalytic conversion of cellulose to sustainable chemicals utilizing cooperative ionic liquid pairs. Green Chem 13(9):2334–2338

    Article  Google Scholar 

Download references

Acknowledgments

We thank American Chemical Society-PRF grant UR1-49436, NSF grants CBET-0929970, HRD-1036593, and USDA grant CBG-2010-38821-21569 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananda S. Amarasekara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amarasekara, A.S., Wiredu, B. Single reactor conversion of corn stover biomass to C5–C20 furanic biocrude oil using sulfonic acid functionalized Brönsted acidic ionic liquid catalysts. Biomass Conv. Bioref. 4, 149–155 (2014). https://doi.org/10.1007/s13399-013-0098-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13399-013-0098-y

Keywords

Navigation