Skip to main content

Advertisement

Log in

Short-Rotation Coppice of Willow for Phytoremediation of a Metal-Contaminated Agricultural Area: A Sustainability Assessment

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Large areas of land contaminated with cadmium (Cd), lead (Pb), and zinc (Zn) are currently in agricultural production in the Campine region in Belgium. Cadmium contents in food and fodder crops frequently exceed legal threshold values, resulting in crop confiscation. This imposes a burden on agriculture and regional policy and, therefore, encourages proper soil management. One way to increase agricultural income and improve soil quality is by growing alternative nonfood crops such as willows in short-rotation coppice (SRC) systems that remediate the soil. This paper compares SRC of willow with rapeseed and energy maize regarding four attributes: metal accumulation capacity, gross agricultural income per hectare, CO2 emission avoidance potential, and agricultural acceptance. Based on multicriteria decision analysis, we conclude that, although SRC of willow has a high potential as an energy and remediating crop, it is unlikely to be implemented on the short term in Flanders unless the economic incentives for the farmers are improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adegbidi HG, Volk TA, White EH, Abrahamson LP, Briggs RD, Bickelhaupt DH (2001) Biomass and nutrient removal by willow clones in experimental bioenergy plantations in New York State. Biomass Bioenerg 20:399–411

    Article  Google Scholar 

  2. Alkorta I, Hernandez-Allica J, Becerril JM, Amezaga I, Albizu I, Garbisu C (2004) Recent findings on the phytoremediation of soils contaminated with environmentally toxic heavy metals and metalloids such as zinc, cadmium, lead and arsenic. Rev Environ Sci Biotechnol 3:71–90

    Article  CAS  Google Scholar 

  3. Ananda J, Herath G (2008) Multi-attribute preference modelling and regional land-use planning. Ecol Econ 65:325–335

    Article  Google Scholar 

  4. Berndes G, Fredrikson F, Borjesson P (2004) Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden. Agr Ecosyst Environ 103:207–223

    Article  CAS  Google Scholar 

  5. Borjesson P (1996) Energy analysis of biomass production and transportation. Biomass Bioenerg 11(4):305–318

    Article  Google Scholar 

  6. Borjesson P (1999) Environmental effects of energy crop cultivation in Sweden—I: identification and quantification. Biomass Bioenerg 16:137–154

    Article  CAS  Google Scholar 

  7. Borjesson P (1999) Environmental effects of energy crop cultivation in Sweden—II: economic valuation. Biomass Bioenerg 16:155–170

    Article  CAS  Google Scholar 

  8. Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous waste. Noyes Data, Parkridge, pp 50–76

    Google Scholar 

  9. Cidad VG, Mathijs E, Nevens F, Reheul D (2003) Energiegewassen in de Vlaamse landbouwsector. Steunpunt Duurzame Landbouw, Leuven

    Google Scholar 

  10. Diakoulaki D, Grafakos S (2004) ExternE-pol, externalities of energy: extension of accounting framework and policy applications. Final report on WP 4, National Technical University Athens, Greece

  11. Dogliotti S, Rossing WAH, van Ittersum MK (2004) Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in south Uruguay. Agr Syst 80:277–302

    Article  Google Scholar 

  12. Dornburg V, Faaij APC (2005) Cost and CO2 emission reduction of biomass cascading: methodological aspects and case study of SRF poplar. Clim Change 71:373–408

    Article  CAS  Google Scholar 

  13. EPA (Environmental Protection Agency) (2000) Introduction to phytoremediation. EPA, Ohio

    Google Scholar 

  14. Ericsson K, Rosenqvist H, Ganko E, Pisarek M, Nilsson L (2006) An agro-economic analysis of willow cultivation in Poland. Biomass Bioenerg 30:16–27

    Article  Google Scholar 

  15. European Commission (2002) Guideline 2002/32/EG of 7 May 2002

  16. European Commission (2006a) Proposal for a directive establishing a framework for the protection of soil and for amending Directive 2004/35/EC of 22 September 2006

  17. European Commission (2006b) Commission regulation (EC) no. 1881/2006 of 19 December 2006

  18. European Commission (2008) Proposal for a directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources, COM(2008) 19 final of 23 January 2008

  19. Firbank LG (2008) Assessing the ecological impacts of bioenergy projects. Bioenerg Res 1:12–19

    Article  Google Scholar 

  20. Flemish Government (2006) Decreet van 27 oktober 2006 betreffende de bodemsanering en de bodembescherming

  21. Flemish Government (2007) Ontwerp van besluit van de Vlaamse Regering van 14 december 2007 houdende vaststelling van het Vlaams reglement betreffende de bodemsanering en de bodembescherming (VLAREBO)

  22. Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    Article  PubMed  CAS  Google Scholar 

  23. General Direction on Statistics and Economic Information (2006) Landbouwstatistieken: landbouwtelling 2005. Available at http://statbel.fgov.be/pub/d5/p501y2005_nl.pdf. Accessed 9 July 2009

  24. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3:1–18

    Google Scholar 

  25. Hernández-Allica J, Becerril JM, Garbisu C (2008) Assessment of the phytoextraction potential of high biomass crop plants. Environ Pollut 152:32–40

    Article  PubMed  CAS  Google Scholar 

  26. Hogervorst J, Plusquin M, Vangronsveld J, Nawrot T, Cuypers A, Van Hecke E et al (2007) House dust as possible route of environmental exposure to cadmium and lead in the adult general population. Environ Res 103:30–37

    Article  PubMed  CAS  Google Scholar 

  27. Houghton JT, Meira Filho LG, Lim B, Treanton K, Marnaty I, Bonduki Y et al (1996) Revised 1996 IPCC guidelines for national greenhouse gas inventories. IPCC/OECD/IEA, UK Meteorological Office, Bracknell

    Google Scholar 

  28. ITRC (Interstate Technology & Regulatory Council) (2009) Phytotechnology technical and regulatory guidance and decision trees, revised PHYTO-3. Interstate Technology and Regulatory Council, Phytotechnologies Team, Washington

    Google Scholar 

  29. Janikowski R, Kucharski R, Sas-Nowosielska A (2000) Multi-criteria and multi-perspective analysis of contaminated land management methods. Environ Monit Assess 60:89–102

    Article  CAS  Google Scholar 

  30. Keoleian GA, Volk TA (2005) Renewable energy from willow biomass crops: life cycle energy, environmental and economic performance. Crit Rev Plant Sci 24:385–406

    Article  Google Scholar 

  31. Khadam IM, Kaluarachchi JJ (2003) Multi-criteria decision analysis with probabilistic risk assessment for the management of contaminated ground water. Environ Impact Assess Rev 23:683–721

    Article  Google Scholar 

  32. Kopp RL, Abrahamson LP, White EH, Volk TA, Nowak CA, Fillhart RC (2001) Willow biomass production during ten successive annual harvests. Biomass Bioenerg 20:1–7

    Article  CAS  Google Scholar 

  33. Kumar PBAN, Dushenkov V, Motto H, Raskin L (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    Article  CAS  Google Scholar 

  34. Lahdelma R, Salminen P, Hokkanen J (2000) Using multi-criteria methods in environmental planning and management. Environ Manage 26(6):595–605

    Article  PubMed  Google Scholar 

  35. Lewandowski I, Schmidt U, Londo M, Faaij A (2006) The economic value of the phytoremediation function—assessed by the example of cadmium remediation by willow (Salix spp). Agr Syst 89:68–89

    Article  Google Scholar 

  36. Lǿken E (2007) Use of multicriteria decision analysis methods for energy planning problems. Renew Sustain Energ Rev 11:1584–1595

    Article  Google Scholar 

  37. McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphere processes involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    Article  CAS  Google Scholar 

  38. Meers E, Ruttens A, Hopgood M, Lesage E, Tack FMG (2005) Potential of Brassica rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 61:561–572

    Article  PubMed  CAS  Google Scholar 

  39. Meers E, Tack FMG, Meiresonne L, Ruttens A,Vangronsveld J (2006) Combining biomass production with phytoextraction of Cd and Zn on moderately contaminated sites. Biomass for Energy Conference, 25–26 September, Bruges, Belgium

  40. Meers E, Van Slycken S, Ruttens A, Meiresonne L, Vangronsveld J, Thewys T et al (2007) The use of energy crops for phytoremediation allows economic valorisation of moderately contaminated land during site decontamination. ICOBTE Conference, 15–19 July 2007, Beijing, China

  41. Meers E, Vandecasteele B, Ruttens A, Vangronsveld J, Tack FMG (2007) Potential of five willow species (Salix spp.) for phytoextraction of heavy metals. Environ Exp Bot 60:57–68

    Article  CAS  Google Scholar 

  42. Meers E, Van Slycken S, Adriaensen K, Ruttens A, Vangronsveld J, Du Laing G et al (2009) The use of bio-energy crops (Zea mays) for ‘phytoattenuation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere (in press)

  43. Meiresonne L (2006) Kansen, mogelijkheden en toekomst voor de populierenteelt in Vlaanderen. Korte-omloophout voor energieproductie: plaats in het Vlaams bosbeleid. Mei 2006. INBO.R.2006.11. In opdracht van INBO, Geraardsbergen

  44. Meiresonne L, De Somvile B, Van Slycken S, Verdonckt P, Van Houtte E, Vandekerckhove B (2009) Biomassa van korteomloophout: ook iets voor Vlaanderen? Sylva Belgica 116:36–42

    Google Scholar 

  45. MIRA (2006) Milieurapport Vlaanderen, Achtergronddocument 2006, Verspreiding van zware metalen. Vlaamse Milieumaatschappij. Available at http://www.milieurapport.be

  46. Mirck J, Isebrands JG, Verwijst T, Ledin S (2005) Development of short-rotation willow coppice systems for environmental purposes in Sweden. Biomass Bioenerg 28:219–228

    Article  Google Scholar 

  47. Mitchell CP, Stevens EA, Watters MP (1999) Short-rotation forestry—operations, productivity and costs based on experience gained in the UK. Forest Ecol Manag 121:123–136

    Article  Google Scholar 

  48. Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Article  Google Scholar 

  49. Nawrot T, Plusquin M, Hogervorst J, Roels HA, Celis H, Thijs L, Vangronsveld J, Van Hecke E, Staessens JA (2006) Environmental exposure to cadmium and risk of cancer: a prospective population-based study. Lancet Oncol 7:119–126

    Article  PubMed  CAS  Google Scholar 

  50. Nawrot T, Van Hecke E, Thijs L, Richart T, Kuznetsova T, Jin Y et al (2008) Cadmium-related mortality and long-term secular trends in the cadmium body burden of an environmentally exposed population. Environ Health Perspect 116:1620–1628

    Article  PubMed  CAS  Google Scholar 

  51. OVAM (2008) Openbare Vlaamse Afvalstoffen Maatschappij Openbare (Public Waste Agency of Flanders). Available at http://www.ovam.be. Accessed 9 July 2009

  52. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29:529–540

    Article  PubMed  CAS  Google Scholar 

  53. Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  54. Rietveld P (1982) Using ordinal information in decision-making under uncertainty. Research Memorandum 1982-12, Department of Economics, Vrije University, Amsterdam, p 22

  55. Robinson B, Fernàndez J-E, Madejón T, Murillo JM, Green S, Clothier B (2003) Phytoextraction: an assessment of biogeochemical and economic viability. Plant Soil 249:117–125

    Article  CAS  Google Scholar 

  56. Rosenqvist H, Roos A, Ling E, Hektor B (2000) Willow growers in Sweden. Biomass Bioenerg 18:137–145

    Article  Google Scholar 

  57. Rosenqvist H, Dawson M (2005) Economics of willow growing in Northern Ireland. Biomass Bioenerg 28:7–14

    Article  Google Scholar 

  58. Rulkens WH, Tichy R, Grotenhuis JTC (1998) Remediation of polluted soil and sediment: perspectives and failures. Water Sci Technol 37:27–35

    CAS  Google Scholar 

  59. Ruttens A, Vangronsveld J, Meiresonne L, Van Slycken S, Meers E, Tack F (2008) Sustainable use of metal contaminated agricultural soils: cultivation of energy crops as an alternative for classical agriculture. Report by order of OVAM, March

  60. Sadok W, Angevin F, Bergez J-E, Bockstaller C, Colomb B, Guichard L et al (2008) Ex ante assessment of the sustainability of alternative cropping systems: implications for using multi-criteria decision-aid methods. Agron Sustain Dev 28:163–174

    Article  Google Scholar 

  61. Scholz V, Ellerbrock R (2002) The growth productivity and environmental impact of the cultivation of energy crops on sandy soil in Germany. Biomass Bioenerg 23:81–92

    Article  CAS  Google Scholar 

  62. Smolders E, Jansson G, Van Laer L, Ruttens A, Vangronsveld J, Römkens P, De Temmerman L, Waegeneers N, Bries J (2007) Teeltadvies voor de landbouw in kader van Interregproject BeNeKempen. OVAM, Mechelen

    Google Scholar 

  63. Suthersan SS (1999) Phytoremediation: remediation engineering: design concepts. CRC, Boca Raton

    Google Scholar 

  64. Tahvanainen L, Rytkonen V-M (1999) Biomass production of Salix viminalis in southern Finland and the effect of soil properties and climate conditions on its production and survival. Biomass Bioenerg 16:103–117

    Article  Google Scholar 

  65. Thewys T, Witters N, Van Slycken S, Ruttens A, Meers E, Tack FMG et al (2009a) Economic viability of phytoremediation of an agricultural area using energy maize part I: impact on the farmer’s income. Int J Phytoremediation (in press)

  66. Thewys T, Witters N, Meers E (2009b) Economic viability of phytoremediation of an agricultural area using energy maize part II: economics of anaerobic digestion of heavy metal contaminated maize in Belgium. Int J Phytoremediation (in press)

  67. UN (1998) Kyoto Protocol to the United Nations Framework Convention on Climate Change

  68. Van de Walle I, Van Camp N, Van de Casteele L, Verheyen K, Lemeur R (2007) Short-rotation forestry of birch, maple, poplar and willow in Flanders (Belgium)—biomass production after 4 years of tree growth. Biomass Bioenerg 31:267–275

    Article  Google Scholar 

  69. Van Ginneken L, Meers E, Guisson R, Ruttens A, Tack FMG, Vangronsveld J et al (2007) Phytoremediation for heavy metal contaminated soils and combined bio-energy production. J Environ Eng Landsc Manag 4:227–236

    Google Scholar 

  70. Vangronsveld J, Van Assche F, Clijsters H (1995) Reclamation of a bare industrial area, contaminated by non-ferrous metals: in situ metal immobilization and revegetation. Environ Pollut 87:51–59

    Article  PubMed  CAS  Google Scholar 

  71. Van Huylenbroeck G (1995) The conflict analysis method: bridging the gap between ELECTRE, PROMETHEE and ORESTE. Eur J Oper Res 82:490–502

    Article  Google Scholar 

  72. Van Huylenbroeck G (1997) Multicriteria tools for the trade-off analysis in rural planning between economic and environmental objectives. Appl Math Comput 83:261–280

    Article  Google Scholar 

  73. Van Huylenbroeck G, Damasco-Tagarino D (1998) Analysing crop choice of Philippine vegetable farmers with multicriteria analysis. J Multi-Crit Decis Anal 7:160–168

    Article  Google Scholar 

  74. Van Nevel L, Mertens J, Oorts K, Verheyen K (2007) Phytoextraction of metals from soils: how far from practice? Environ Pollut 150:34–40

    Article  PubMed  CAS  Google Scholar 

  75. Van Slycken S, Witters N, Meers E, Adriaensen K, Thewys T, Vangronsveld J et al (2009) Energy maize for phytoremediation of metal-enriched soils and production of energy; Case: the Campine region (BE), AgSAP conference, Integrated Assessment of Agriculture and Sustainable Development, Setting the agenda for Science and Policy, March 10-12, 2009. Egmond Aan Zee, The Netherlands

  76. Vassilev A, Vangronsveld J, Yordanov I (2002) Cadmium phytoextraction: present state, biological backgrounds and research needs. Bulg J Plant Physiol 28:68–95

    Google Scholar 

  77. Vassilev A, Schwitzguébel J-P, Thewys T, van der Lelie D, Vangronsveld J (2004) The use of plants for remediation of metal contaminated soils. ScientificWorldJournal 4:9–34

    PubMed  CAS  Google Scholar 

  78. Volk TA, Verwijst T, Tharakan PJ, Abrahamson LP, White EH (2004) Growing fuel: a sustainability assessment of willow biomass crops. Front Ecol Environ 2(8):411–418

    Article  Google Scholar 

  79. Zander P, Kachele H (1999) Modeling multiple objectives of land use for sustainable development. Agr Syst 59:311–325

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nele Witters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witters, N., Van Slycken, S., Ruttens, A. et al. Short-Rotation Coppice of Willow for Phytoremediation of a Metal-Contaminated Agricultural Area: A Sustainability Assessment. Bioenerg. Res. 2, 144–152 (2009). https://doi.org/10.1007/s12155-009-9042-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-009-9042-1

Keywords

Navigation