Skip to main content
Log in

Improving the analytical performance of ion mobility spectrometer using a non-radioactive electron source

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

For the ionization of gas mixtures, several ionization sources can be coupled to an ion mobility spectrometer. Radioactive sources, e.g. beta radiators like 63Ni and 3H, are the most commonly used ionization sources. However, due to legal restrictions radioactive ionization sources are not applicable in certain applications. Non-radioactive alternatives are corona discharge ionization sources or photoionization sources. However, using an electron gun allows regulation of ion production rate, ionization time and recombination time by simply changing the operating parameters, which can be utilized to enhance the analytical performance of ion mobility spectrometers. In this work, the impact of an ionization source parameter variation on the ion mobility spectrum is demonstrated. Increasing the ion production rate, the amount of the generated ions increases leading to higher signal intensity while the noise remains constant. Thus, the signal to noise ratio can be increased, leading to better limits of detection. In a next step, the ion production rate is kept constant while the influence of ionization time on the ion mobility spectrum is investigated. It is shown, that varying the ionization time allows the determination of the reaction rate constants as additional information to the ion mobility. Furthermore, we show the prevention of discrimination processes by using short ionization times combined with an increased ion production rate. Thus, the limit of detection for benzene in presence of toluene is improved. Additionally, it is shown that using ion-ion recombination leads to the detection of the ion species with the highest proton affinity at higher recombination times while the low proton affine ions already recombined. Thus, the measurement of the ion mobility spectra at a defined recombination time allows a suppression of disturbing low proton affine substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Borsdorf H, Eiceman GA (2006) Ion mobility spectrometry: principles and applications. Appl Spectrosc Rev 41(4):323–375

    Article  CAS  Google Scholar 

  2. Chen YH, Hill HH, Wittmer DP (1996) Thermal effects on electrospray ionization ion mobility spectrometry. Int J Mass Spectrom Ion Process 154(1–2):1–13

    Article  CAS  Google Scholar 

  3. Kanu AB, Haigh PE, Hill HH (2005) Surface detection of chemical warfare agent simulants and degradation products. Anal Chim Acta 553(1–2):148–159

    Article  CAS  Google Scholar 

  4. Kanu AB, Hill HH (2007) Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas. Talanta 73(4):692–699

    Article  CAS  Google Scholar 

  5. Ewing RG, Atkinson DA, Eiceman GA, Ewing GJ (2001) A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 54(3):515–529

    Article  CAS  Google Scholar 

  6. Ungethüm B, Walte A, Münchmeyer W, Matz G (2009) Comparative measurements of toxic industrial compounds with a differential mobility spectrometer and a time of flight ion mobility spectrometer. Int J Ion Mobil Spectrom 12(4):131–137

    Article  Google Scholar 

  7. Wu C et al. (2002) Construction and characterization of a high-flow, high-resolution ion mobility spectrometer for detection of explosives after personnel portal sampling. Talanta 57(1):123–134

    CAS  Google Scholar 

  8. Karpas Z (2013) Applications of ion mobility spectrometry (IMS) in the field of foodomics. Food Res Int 54(1):1146–1151

    Article  CAS  Google Scholar 

  9. Vautz W et al. (2006) Ion mobility spectrometry for food quality and safety. Food Addit Contam 23(11):1064–1073

    Article  CAS  Google Scholar 

  10. Vautz W et al. (2010) Breath sampling control for medical application. Int J Ion Mobil Spectrom 13(1):41–46

    Article  CAS  Google Scholar 

  11. Cochems P, Kirk A, Zimmermann S (2014) In-circuit-measurement of parasitic elements in high gain high bandwidth low noise transimpedance amplifiers. The Review of scientific instruments 85(12):124703

    Article  CAS  Google Scholar 

  12. Kirk AT, Zimmermann S (2015) Pushing a compact 15 cm long ultra-high resolution drift tube ion mobility spectrometer with R = 250 to R = 425 using peak deconvolution. Int J Ion Mobil Spectrom 18(1–2):17–22

    Article  CAS  Google Scholar 

  13. Hill HH, Siems WF, Louis S, Robert H (1990) Ion mobility spectrometry. Anal Chem 62(23):1201 A–1209 A

    Article  Google Scholar 

  14. Leonhardt JW (1996) New detectors in environmental monitoring using tritium sources. J Radioanal Nucl Chem Artic 206(2):333–339

    Article  CAS  Google Scholar 

  15. Sabo M et al. (2011) Positive corona discharge ion source with IMS/MS to detect impurities in high purity Nitrogen. Eur Phys J Appl Phys 55(1):13808

    Article  Google Scholar 

  16. Sabo M, Matejčík Š (2012) Corona discharge ion mobility spectrometry with orthogonal acceleration time of flight mass spectrometry for monitoring of volatile organic compounds. Anal Chem 84(12):5327–5334

    Article  CAS  Google Scholar 

  17. Kauppila TJ, Kersten H, Benter T (2014) The ionization mechanisms in direct and dopant-assisted atmospheric pressure photoionization and atmospheric pressure laser ionization. J Am Soc Mass Spectrom 25(11):1870–1881

    Article  CAS  Google Scholar 

  18. Matsaev V, Gumerov M, Krasnobaev L, Pershenkov V, Belyakov V, Christyakov A, Boudovitch V (2002) IMS Spectrometers with Radioactive, X-ray, UV and Laser Ionization. Int J Ion Mobil Spectrom 5(3):112–114

    CAS  Google Scholar 

  19. Reinecke T et al. (2016) A compact high-resolution X-ray ion mobility spectrometer. The Review of scientific instruments 87(5):53120

    Article  CAS  Google Scholar 

  20. P. Cochems et al, “Fast pulsed operation of a small non-radioactive electron source with continuous emission current control,” The Review of scientific instruments, vol. 86, no. 6, p. 65102, 2015.

  21. Liedtke S et al. (2016) Medium Vacuum Electron Emitter as Soft Atmospheric Pressure Chemical Ionization Source for Organic Molecules. Anal Chem 88(9):5003–5008

    Article  CAS  Google Scholar 

  22. Morozov A, Krücken R, Wieser J, Ulrich A (2005) Gas kinetic studies using a table-top set-up with electron beam excitation: quenching of molecular nitrogen emission by water vapour. Eur Phys J D 33(2):207–211

    Article  CAS  Google Scholar 

  23. Heptner A, Cochems P, Langejuergen J, Gunzer F, Zimmermann S (2012) Investigation of ion-ion-recombination at atmospheric pressure with a pulsed electron gun. Analyst 137(21):5105–5112

    Article  CAS  Google Scholar 

  24. Kirk AT, Allers M, Cochems P, Langejuergen J, Zimmermann S (2013) A compact high resolution ion mobility spectrometer for fast trace gas analysis. Analyst 138(18):5200–5207

    Article  CAS  Google Scholar 

  25. Eiceman GA, Karpas Z, Hill HH (2013) Ion mobility spectrometry, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  26. Kirk AT, Zimmermann S (2014) Bradbury-Nielsen vs. Field switching shutters for high resolution drift tube ion mobility spectrometers. Int J Ion Mobil Spectrom 17(3–4):131–137

    Article  Google Scholar 

  27. Loeb L, Kip A, Hudson G, Bennett W (1941) Pulses in Negative Point-to-Plane Corona. Phys Rev 60(10):714–722

    Article  Google Scholar 

  28. Loeb LB (ed) (1960) Basic processes of gaseous electronics. Univ. of California Press, California

    Google Scholar 

  29. Carr TW (1984) Plasma chromatography. Plenum Press, New York

    Google Scholar 

  30. Earl W (1993) McDaniel, Ed, Atomic collisions heavy particle projectiles. New York, Chichester, UK, Brisbane, Toronto, Singapore, John Wiley & Sons, Inc

    Google Scholar 

  31. Gunzer F (2015) Investigation of the ion signal decay in the reaction region of a pulsed ion mobility spectrometer. Int J Ion Mobil Spectrom 18(1–2):41–49

    Article  CAS  Google Scholar 

  32. Puton J, Holopainen SI, Mäkinen MA, Sillanpää MET (2012) Quantitative response of IMS detector for mixtures containing two active components. Anal Chem 84(21):9131–9138

    CAS  Google Scholar 

  33. Langejuergen J, Allers M, Oermann J, Kirk A, Zimmermann S (2014) Quantitative detection of benzene in toluene- and xylene-rich atmospheres using high-kinetic-energy ion mobility spectrometry (IMS). Anal Chem 86(23):11841–11846

    Article  CAS  Google Scholar 

  34. “Overall evaluations of carcinogenicity: an updating of IARC Monographs volumes 1 to 42,” IARC Monogr Eval Carcinog Risks Hum Suppl, vol. 7, pp. 1–440, 1987.

  35. Heptner A, Reinecke T, Langejuergen J, Zimmermann S (2014) A gated atmospheric pressure drift tube ion mobility spectrometer-time-of-flight mass spectrometer. J Chromatogr A 1356:241–248

    Article  CAS  Google Scholar 

  36. Puton J, Nousiainen M, Sillanpää M (2008) Ion mobility spectrometers with doped gases. Talanta 76(5):978–987

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is funded by the German Research Foundation (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Heptner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heptner, A., Angerstein, N., Reinecke, T. et al. Improving the analytical performance of ion mobility spectrometer using a non-radioactive electron source. Int. J. Ion Mobil. Spec. 19, 175–182 (2016). https://doi.org/10.1007/s12127-016-0205-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-016-0205-4

Keywords

Navigation