Skip to main content
Log in

Investigation of the ion signal decay in the reaction region of a pulsed ion mobility spectrometer

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

Ion mobility spectrometry is based on the principle that different analyte ions have in general different mobilities, i.e., they reach different drift velocities when accelerated by an electric field. In order to produce these ions, many different methods are used nowadays. One of these methods, pulsed electron beams, allows for the introduction of delay times in-between ionization and detection. After such a delay, the ion signals are typically detected with lower intensity, which means that a reduced number of ions reaches the detector. Here we present the results of a study in which the ion concentration in the reaction region was analyzed with help of theoretical principles; these results have additionally been compared to experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eiceman GA, Karpas Z (2005) Ion mobility spectrometry. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Gunzer F, Zimmermann S, Baether W (2010) Application of a nonradioactive pulsed electron source for ion mobility spectrometry. Anal Chem 82:3756–3763

    Article  CAS  Google Scholar 

  3. Gunzer F, Baether W, Zimmermann S (2011) Investigation of Dimethyl Methylphosphonate (DMMP) with an ion mobility spectrometer using a pulsed electron source. Int J Ion Mobil Spectrom 14:99–107

    Article  CAS  Google Scholar 

  4. Baether W, Zimmermann S, Gunzer F (2012) Pulsed ion mobility spectrometer for the detection of toluene 2,4-diisocyanate (TDI) in ambient air. IEEE Sensors J 12:1748–1754

    Article  CAS  Google Scholar 

  5. Baether W, Zimmermann S, Gunzer F (2012) Signal decay curves obtained with a pulsed electron gun allow for improved analyte identification power of ion mobility spectrometers by distinction of monomer and dimer signals. Sensors Actuators B 171(172):1238–1242

    Article  Google Scholar 

  6. Baether W, Zimmermann S, Gunzer F (2012) Quantitative information in decay curves obtained with a pulsed ion mobility spectrometer. Analyst 137:2723–2727

    Article  CAS  Google Scholar 

  7. Baether W, Zimmermann S, Gunzer F (2012) Pulsed electron beams in ion mobility spectrometry. Rev Anal Chem 31:139–152

    Article  CAS  Google Scholar 

  8. Baether W, Zimmermann S, Gunzer F (2010) Investigation of the influence of voltage parameters on decay times in an ion mobility spectrometer with a pulsed non-radioactive electron source. Int J Ion Mobil Spectrom 13:95–101

    Article  CAS  Google Scholar 

  9. Valadbeigi Y, Farrokhpour H, Rouholahnejad R, Tabrizchi M (2014) Experimental and theoretical study of the kinetic of proton transfer reaction by ion mobility spectrometry. Int J Mass Spectrom 369:105–111

    Article  CAS  Google Scholar 

  10. Valadbeigi Y, Farrokhpour H, Tabrizchi M (2014) Effect of hydration on the kinetics of proton-bound dimer formation: experimental and theoretical study. J Phys Chem A 118:7663–7671

    Article  CAS  Google Scholar 

  11. Ewing RG, Eiceman GA, Harden CS, Stone JA (2006) The kinetics of the decompositions of the proton bound dimers of 1,4-dimethylpyridine and dimethyl methylphosphonate from atmospheric pressure ion mobility spectra. Int J Mass Spectrom 255–256:76–85

    Article  Google Scholar 

  12. Gaussian 09, Revision A.1, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian, Inc., Wallingford CT

  13. Heptner A, Cochems P, Langejuergen J, Gunzer F, Zimermann S (2012) Investigation of ion-ion recombination at atmospheric pressure with a pulsed electron gun. Analyst 137:5105–5112

    Article  CAS  Google Scholar 

  14. Lubman DM, Kronick MN (1982) Plasma chromatography with laser-produced ions. Anal Chem 54:1546–1551

    Article  CAS  Google Scholar 

  15. Becke AD (1993) Density-functional thermochemistry III: the role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  16. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular Dischroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  17. Curtiss LA, Redfern PC, Raghavachari KJ (2005) Assessment of gaussian-3 and density functional theories on the G3/05 test set of experimental energies. Chem Phys 123:124107

    Google Scholar 

  18. Zhao Y, Schultz NE, Truhlar DG (2005) Exchange-correlation functionals with broad accuracy for metallic and nonmetallic copounds, kinetics, and noncovalent interactions. J Chem Phys 123:161103

    Article  Google Scholar 

  19. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Accounts 120:215–241

    Article  CAS  Google Scholar 

  20. Walker M, Harvey AJA, Sen A, Dessent CEH (2013) Performance of M06, M06-2X, and M06-HF density functionals for conformationally flexible anionic clusters: M06 functionals perform better than B3LYP for a model system with dispersion and ionic hydrogen-bonding interactions. J Phys Chem A 117:12590–12600

    Article  CAS  Google Scholar 

  21. Zhao Y, Truhlar DG (2008) Density functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  22. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parameterization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  Google Scholar 

  23. DiLabio GA, Johnson ER, Otero-de-la-Rozac A (2013) Performance of conventional and dispersion-corrected density-functional theory methods for hydrogen bonding interaction energies. Phys Chem Chem Phys 15:12821–12828

    Article  CAS  Google Scholar 

  24. Goerigk L, Grimme S (2011) A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. Phys Chem Chem Phys 13:6670–6688

    Article  CAS  Google Scholar 

  25. Steinmetz M, Grimme S (2013) Benchmark study of the performance of density functional theory for bond activations with (Ni, Pd)-based transition-metal catalysts. ChemistryOpen 2:115–124

    Article  CAS  Google Scholar 

  26. Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank W. Baether at Dräger in Lübeck, Germany, and S. Zimmermann at the Leibnitz-Universität in Hannover, Germany, for their support during the measurements and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Gunzer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunzer, F. Investigation of the ion signal decay in the reaction region of a pulsed ion mobility spectrometer. Int. J. Ion Mobil. Spec. 18, 41–49 (2015). https://doi.org/10.1007/s12127-015-0171-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-015-0171-2

Keywords

Navigation