Skip to main content
Log in

Analysis of gasoline contaminated water samples by means of dopant-assisted atmospheric pressure photoionization differential ion mobility spectrometry

  • Original Research
  • Published:
International Journal for Ion Mobility Spectrometry

Abstract

In this study the influence of aromatic dopant benzene on the sensitivity of GC-APPI-DMS to gasoline related aromatic compounds was investigated. This influence was investigated on example of four gasolin related fingerprints (toluene, ethylbenzene, o-xylene, and 1,2,4-trimethylbenzene), which were found in high relative abundance in the water-soluble gasoline fraction. The analysis of calibration curves slopes demonstrats that the GC-APPI-DMS sensitivity to gasoline fingerprints can be improved by up to seven times when benzene concentration in nitrogen carrier gas is less than 10 ppmv/v. The estimated detection limits (S/N = 3) for the analyzed in this study compounds were found to be within the range of 33–105 μg L−1 at benzene concentration in the carrier gas of 2.27 ppmv/v (10 μL injection volume). These limits of detection may be reduced (at the cost of lower resolution) using the larger injection volumes. For example, increase of injection volume to 100 μL at benzene concentration in the carrier gas of 2.27 ppmv/v leads to reduction of LOD values for toluene, ethylbenzene, and o-xylene to 11.1, 13.3, and 5.3 μg L−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baciocchi R, Berardi S, Verginelli I (2010) Human health risk assessment: models for predicting the effective exposure duration of on-site receptors exposed to contaminated groundwater. J Hazard Mater 181:226–233. doi:10.1016/j.jhazmat.2010.05.001

    Article  CAS  Google Scholar 

  2. Shih T, Rong Y, Harmon T, Suffet M (2004) Evaluation of the impact of fuel hydrocarbons and oxygenates on groundwater resources. Environ Sci Technol 38:42–48. doi:10.1021/es0304650

    Article  CAS  Google Scholar 

  3. Shvartsburg AA (2008) Differential ion mobility spectrometry: nonlinear ion transport and fundamentals of FAIMS. CRC Press

  4. Kolakowski BM, Mester Z (2007) Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132:842–864. doi:10.1039/B706039D

    Article  CAS  Google Scholar 

  5. Krylov EV, Nazarov EG (2009) Electric field dependence of the ion mobility. Int J Mass Spectrom 285:149–156. doi:10.1016/j.ijms.2009.05.009

    Article  CAS  Google Scholar 

  6. Buryakov IA, Krylov EV, Nazarov EG, Rasulev UK (1993) A new method of separation of multi-atomic ions by mobility at atmospheric pressure using a high-frequency amplitude-asymmetric strong electric field. Int J Mass Spectrom Ion Process 128:143–148. doi:10.1016/0168-1176(93)87062-W

    Article  CAS  Google Scholar 

  7. Miller RA, Nazarov EG, Eiceman GA, King AT (2001) A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection. Sens Actuator A Phys 91:301–312. doi:10.1016/S0924-4247(01)00600-8

    Article  CAS  Google Scholar 

  8. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Planar differential mobility spectrometer as a pre-filter for atmospheric pressure ionization mass spectrometry. Int J Mass Spectrom 298:45–54. doi:10.1016/j.ijms.2010.01.006

    Article  CAS  Google Scholar 

  9. Saeed T, Al-Mutairi M (1999) Chemical composition of the water-soluble fraction of the leaded gasolines in seawater. Environ Int 25:117–129. doi:10.1016/S0160-4120(98)00093-2

    Article  CAS  Google Scholar 

  10. Weisman W (1998) TPH series Vol. 1: analysis of petroleum hydrocarbons in environmental media. Amherst Scientific Publishers

  11. Liang F, Kerpen K, Kuklya A, Telgheder U (2012) Fingerprint identification of volatile organic compounds in gasoline contaminated groundwater using gas chromatography differential ion mobility spectrometry. Int J Ion Mobil Spectrom 15:169–177. doi:10.1007/s12127-012-0101-5

    Article  CAS  Google Scholar 

  12. Nazarov EG, Miller RA, Eiceman GA, Stone JA (2006) Miniature differential mobility spectrometry using atmospheric pressure photoionization. Anal Chem 78:4553–4563. doi:10.1021/ac052213i

    Article  CAS  Google Scholar 

  13. Roetering S, Nazarov EG, Borsdorf H, Weickhardt C (2010) Effect of dopants on the analysis of pesticides by means of differential mobility spectrometry with atmospheric pressure photoionization. Int J Ion Mobil Spectrom 13:47–54. doi:10.1007/s12127-010-0043-8

    Article  CAS  Google Scholar 

  14. Eiceman GA, Krylov EV, Krylova NS, Nazarov EG, Miller RA (2004) Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Anal Chem 76:4937–4944. doi:10.1021/ac035502k

    Article  CAS  Google Scholar 

  15. Rorrer LC III, Yost RA (2011) Solvent vapor effects on planar high-field asymmetric waveform ion mobility spectrometry. Int J Mass Spectrom 300:173–181. doi:10.1016/j.ijms.2010.04.002

    Article  CAS  Google Scholar 

  16. Schneider BB, Covey TR, Coy SL, Krylov EV, Nazarov EG (2010) Control of chemical effects in the separation process of a differential mobility mass spectrometer system. Eur J Mass Spectrom 16:57–71. doi:10.1255/ejms.1025

    Article  CAS  Google Scholar 

  17. Kuklya A, Uteschil F, Kerpen K, Marks R, Telgheder U (2015) Non-polar modifier assisted analysis of aromatic compounds by means of planar differential ion mobility spectrometry with a 63Ni ionization source. Anal Methods 7:2100–2107. doi:10.1039/C4AY03029J

    Article  CAS  Google Scholar 

  18. Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J Appl Crystallogr 43:1126–1128. doi:10.1107/S0021889810030499

    Article  CAS  Google Scholar 

  19. Nazarov EG, Coy SL, Krylov EV, Miller RA, Eiceman GA (2006) Pressure effects in differential mobility spectrometry. Anal Chem 78:7697–7706. doi:10.1021/ac061092z

    Article  CAS  Google Scholar 

  20. Code of Federal Regulations (2010) Title 40 - Protection of Environment, Part 141: National Primary Drinking Water Regulations

  21. WHO (2011) Guidelines for drinking-water quality, fourth edition. WHO

  22. Eiceman GA, Karpas Z, Hill Jr HH (2014) Ion mobility spectrometry, 3rd ed. CRC Press

  23. Kuklya A, Uteschil F, Kerpen K, Marks R, Telgheder U (2014) Development of an electrospray-63Ni-differential ion mobility spectrometer for the analysis of aqueous samples. Talanta 120:173–180. doi:10.1016/j.talanta.2013.10.056

    Article  CAS  Google Scholar 

  24. Mitra S (2003) Sample preparation techniques in analytical chemistry. Wiley

  25. Chary NS, Fernandez-Alba AR (2012) Determination of volatile organic compounds in drinking and environmental waters. TrAC Trends Anal Chem 32:60–75. doi:10.1016/j.trac.2011.08.011

    Article  CAS  Google Scholar 

  26. Kuklya A, Uteschil F, Kerpen K, Marks R, Telgheder U (2015) Effect of the humidity on analysis of aromatic compounds with planar differential ion mobility spectrometry. Int J Ion Mobil Spectrom 18:67–75. doi:10.1007/s12127-014-0162-8

    Article  CAS  Google Scholar 

  27. Eiceman GA, Feng Y (2009) Limits of separation of a multi-capillary column with mixtures of volatile organic compounds for a flame ionization detector and a differential mobility detector. J Chromatogr A 1216:985–993. doi:10.1016/j.chroma.2008.11.091

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Kuklya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuklya, A., Joksimoski, S., Kerpen, K. et al. Analysis of gasoline contaminated water samples by means of dopant-assisted atmospheric pressure photoionization differential ion mobility spectrometry. Int. J. Ion Mobil. Spec. 19, 121–130 (2016). https://doi.org/10.1007/s12127-016-0194-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12127-016-0194-3

Keywords

Navigation