Skip to main content
Log in

The separation of binary relative three-weight codes and its applications

  • Published:
Cryptography and Communications Aims and scope Submit manuscript

Abstract

The separation and its applications of binary relative three-weight codes are studied. We first present a certain formula for computing the minimum values of the cardinality of separating coordinate position (CSCP) of some codeword sets for any binary linear code, and then with the above formula, we calculate all the minimum values of the CSCP of binary relative three-weight codes so as to determine their separation. By using the obtained separation of binary relative three-weight codes, some new binary separating codes are constructed. Based on a family of the minimum values of the CSCP of binary relative three-weight codes, we also determine all the minimal codewords and the trellis complexity of binary relative three-weight codes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashikhmin, A., Barg, A.: Minimal vectors in linear codes. IEEE Trans. Inform. Theory 44(5), 2010–2017 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, W.D., Klve, T.: The weight hierarchies of q-ary codes of dimension 4. IEEE Trans. Inform. Theory 42(6), 2265–2272 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cohen, G., Encheva, S., Litsyn, S., Schaathun, H.G.: Intersecting codes and separating codes. Discret. Appl. Math. 128(1), 75–83 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cohen, G., Encheva, S., Schaathun, H.G.: More on (2,2)-separating systems. IEEE Trans. Inform. Theory 48(9), 2606–2609 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, G., Lempel, A.: Linear intersecting codes. Discrete Math. 56(1), 35–43 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, G., Zémor, G.: Intersecting codes and independent families. IEEE Trans. Inform. Theory 40(6), 1872–1881 (1994)

    Article  MATH  Google Scholar 

  7. Ding, K., Ding, C.: Binary linear codes with three weights. IEEE Commun. Lett. 18(11), 1879–1882 (2014)

    Article  Google Scholar 

  8. Ding, C., Heng, Z., Zhou, Z.: Minimal binary linear codes. IEEE Trans. Inform. Theory 64(10), 6536–6545 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Forney, G.D.: Coset codes II: binary lattices and related codes. IEEE Trans. Inform. Theory 34(5), 1152–1187 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Heng, Z., Ding, C., Zhou, Z.: Minimal linear codes over finite fields. Finite Fields Appl. 54, 176–196 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  11. Liu, L., Xie, X.H., Li, L., Zhu, S.: The weight distributions of two classes of nonbinary cyclic codes with few weights. IEEE Commun. Lett. 21(11), 2336–2339 (2017)

    Article  Google Scholar 

  12. Liu, Z.H., Wu, X.W.: On relative constant-weight codes. Des. Codes Crypt. 75(1), 127–144 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, Z.H., Wu, X.W.: Trellis complexity and pseudoredundancy of relative two-weight codes. Appl. Algebra Eng. Commun. Comput. 27(2), 139–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rassard, G.B., Crépeau, C., Robert, J.M.: Information-theoretic reductions among disclosure problems. Proc. 27th IEEE Symp. Foundat. Comput. Sci., 168–173 (1986)

  15. Sagalovich, Y.L.: Completely separating systems. Probl. Peredachi Inf. 18(2), 74–82 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Vardy, A., Be’Ery, Y.: Maximum-likelihood soft decision decoding of BCH codes. IEEE Trans. Inform. Theory 40(2), 546–554 (1994)

    Article  MATH  Google Scholar 

  17. Yang, S., Yao, Z.A., Zhao, C.A.: The weight distributions of two classes of p-ary cyclic codes with few weights. Finite Fields Appl. 44, 76–91 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ytrehus, Ø.: On the trellis complexity of certain binary linear block codes. IEEE Trans. Inform. Theory 41(2), 559–560 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of Y. Gao is supported in part by the National Key R&D Program of China under grant No. 2017YFB1400700.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zihui Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: A proof of Theorem 4

Appendix: A proof of Theorem 4

We present in this Appendix the proof of Theorem 4.

Proof

It is necessary to get 𝜃2,1 and 𝜃2,2. The computing methods for 𝜃2,1 and 𝜃2,2 are similar. We only take 𝜃2,2 as an example, and our technique is to use Lemma 3 by computing all the possible |𝜃(T,T)| (|T| = |T| = 2). Noting that the codewords c2 and c3 in the formula given in Lemma 3 are symmetric, one may list all the possible distributions of independent codewords c1, c2 and c3 and the corresponding |𝜃(T,T)| as follows.

  1. 1)

    c1, c2, c3\(\mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  2. 2)

    c1, c2\(\mathcal {C}_{1}\) and \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  3. 3)

    c1, c2\(\mathcal {C}_{1}\) and \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  4. 4)

    c2, c3\(\mathcal {C}_{1}\) and \(c_{1}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  5. 5)

    c2, c3\(\mathcal {C}_{1}\) and \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  6. 6)

    c1\(\mathcal {C}_{1}\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{2}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {4d_{2}-3d_{1}}{4}\).

  7. 7)

    c1\(\mathcal {C}_{1}\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{2}-d_{1}}{4}\).

  8. 8)

    c1\(\mathcal {C}_{1}\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{2}-d_{1}}{4}\).

  9. 9)

    c1\(\mathcal {C}_{1}\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\) and \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\) and \(c_{2}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {4d_{3}-3d_{1}}{4}\).

  10. 10)

    c1\(\mathcal {C}_{1}\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\) and \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\) and \(c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {4d_{3}-2d_{2}-d_{1}}{4}\).

  11. 11)

    c1\(\mathcal {C}_{1}\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\) and \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\) and \(c_{2}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{3}-d_{1}}{4}\).

  12. 12)

    c2\(\mathcal {C}_{1}\), \(c_{1}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  13. 13)

    c2\(\mathcal {C}_{1}\), \(c_{1}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  14. 14)

    c2\(\mathcal {C}_{1}\), \(c_{1}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  15. 15)

    c2\(\mathcal {C}_{1}\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  16. 16)

    c2\(\mathcal {C}_{1}\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  17. 17)

    c2\(\mathcal {C}_{1}\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}+d_{2}-d_{3}}{4}\).

  18. 18)

    c2\(\mathcal {C}_{1}\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  19. 19)

    c1\((\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{2}\in \mathcal {C}_{1}\) and \(c_{1}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  20. 20)

    c1\((\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{2}\in \mathcal {C}_{1}\) and \(c_{1}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  21. 21)

    c1\((\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\) and \(c_{2}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{2}-d_{1}}{4}\).

  22. 22)

    c1\((\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\) and \(c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\) and \(c_{1}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\) and \(c_{1}+c_{2}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{2}-d_{1}}{4}\).

  23. 23)

    c1\((\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\) and \(c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\) and \(c_{1}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\) and \(c_{1}+c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{2}}{4}\).

  24. 24)

    c1\((\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{2}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  25. 25)

    c1\((\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{2}}{4}\).

  26. 26)

    c2\((\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{2}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{2}-d_{1}}{4}\).

  27. 27)

    c2\((\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{2}}{4}\).

  28. 28)

    \(c_{1}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{2}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {4d_{3}-2d_{2}-d_{1}}{4}\).

  29. 29)

    \(c_{1}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{2}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {4d_{3}-2d_{2}-d_{1}}{4}\).

  30. 30)

    \(c_{1}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {4d_{3}-3d_{2}}{4}\).

  31. 31)

    \(c_{1}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{2}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{3}-d_{2}}{4}\).

  32. 32)

    \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  33. 33)

    \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{2}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{2}-d_{1}}{4}\).

  34. 34)

    \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{2}}{4}\).

  35. 35)

    \(c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{2}}{4}\).

  36. 36)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{2}\in \mathcal {C}_{1}\), and \(c_{1}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  37. 37)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{2}\in \mathcal {C}_{1}\), and \(c_{1}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  38. 38)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}+c_{3}\in \mathcal {C}_{1}\), and \(c_{1}+c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{2}-d_{1}}{4}\).

  39. 39)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), \(c_{1}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{2}}{4}\).

  40. 40)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{2}\in \mathcal {C}_{1}\), and \(c_{1}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\).

  41. 41)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{2}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{2}}{4}\).

  42. 42)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}+c_{3}\in \mathcal {C}_{1}\), and \(c_{1}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{3}-d_{1}}{4}\).

  43. 43)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\), and \(c_{1}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{3}-d_{2}}{ 4}\).

  44. 44)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{2}+c_{3}\in \mathcal {C}_{1}\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{3}-d_{1}}{4}\).

  45. 45)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{2}+c_{3}\in (\mathcal {C}_{2}\backslash \mathcal {C}_{1})\). Then, \(|\theta (T,T^{\prime })|=\frac {2d_{3}-d_{2}}{4}\).

  46. 46)

    \(c_{1}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{2}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{1}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), \(c_{2}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\), and \(c_{1}+c_{2}+c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\). Then, \(|\theta (T,T^{\prime })|=\frac {d_{3}}{4}\).

To check each of the above cases, we take case 3) as an example. Since c1, c2\(\mathcal {C}_{1}\) and \(c_{3}\in (\mathcal {C}\backslash \mathcal {C}_{2})\) and \(\mathcal {C}_{1}\subset \mathcal {C}_{2}\) are subcodes of \(\mathcal {C}\), one may get \(c_{1}+c_{2}\in \mathcal {C}_{1}\), c1 + c3\((\mathcal {C}\backslash \mathcal {C}_{2})\), c2 + c3\((\mathcal {C}\backslash \mathcal {C}_{2})\), and c1 + c2 + c3\((\mathcal {C}\backslash \mathcal {C}_{2})\). Thus, w(c1) = w(c2) = d1, w(c3) = d3, w(c1 + c2) = d1, w(c1 + c3) = d3, w(c2 + c3) = d3, and w(c1 + c2 + c3) = d3. Then, \(|\theta (T,T^{\prime })|=\frac {d_{1}}{4}\) by using the formula in Lemma 3.

Making use of the above cases, one gets that

$$\begin{array}{@{}rcl@{}} \theta_{2,2}&=&\min_{T,T^{\prime}}|\theta(T,T^{\prime})|\\ &=&\min\left\{\frac{d_{1}}{4},\frac{4d_{2}-3d_{1}}{4}, \frac{2d_{2}-d_{1}}{4}, \frac{4d_{3}-3d_{1}}{4}, \frac{4d_{3}-2d_{2}-d_{1}}{4}, \frac{2d_{3}-d_{1}}{4}, \right.\\ &&\quad\quad \left. \frac{d_{1}+d_{2}-d_{3}}{4}, \frac{d_{2}}{4}, \frac{4d_{3}-3d_{2}}{4}, \frac{2d_{3}-d_{2}}{4}, \frac{d_{3}}{4}\right\}. \end{array} $$
(12)

The theorem follows by (9). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Liu, Z. & Liu, Y. The separation of binary relative three-weight codes and its applications. Cryptogr. Commun. 11, 979–992 (2019). https://doi.org/10.1007/s12095-018-0339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12095-018-0339-9

Keywords

Mathematics Subject Classification (2010)

Navigation