Skip to main content

Advertisement

Log in

Development of Mesorhizobium ciceri-Based Biofilms and Analyses of Their Antifungal and Plant Growth Promoting Activity in Chickpea Challenged by Fusarium Wilt

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Biofilmed biofertilizers have emerged as a new improved inoculant technology to provide efficient nutrient and pest management and sustain soil fertility. In this investigation, development of a Trichoderma virideMesorhizobium ciceri biofilmed inoculant was undertaken, which we hypothesized, would possess more effective biological nitrogen fixing ability and plant growth promoting properties. As a novel attempt, we selected Mesorhizobium ciceri spp. with good antifungal attributes with the assumption that such inoculants could also serve as biocontrol agents. These biofilms exhibited significant enhancement in several plant growth promoting attributes, including 13–21 % increase in seed germination, production of ammonia, IAA and more than onefold to twofold enhancement in phosphate solubilisation, when compared to their individual partners. Enhancement of 10–11 % in antifungal activity against Fusarium oxysporum f. sp. ciceri was also recorded, over the respective M. ciceri counterparts. The effect of biofilms and the M. ciceri cultures individual on growth parameters of chickpea under pathogen challenged soil illustrated that the biofilms performed at par with the M. ciceri strains for most plant biometrical and disease related attributes. Elicitation of defense related enzymes like l-phenylalanine ammonia lyase, peroxidase and polyphenol oxidase was higher in M. ciceri/biofilm treated plants as compared to uninoculated plants under pathogen challenged soil. Further work on the signalling mechanisms among the partners and their tripartite interactions with host plant is envisaged in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Peoples MB, Ladha JK, Herridge DF (1995) Enhancing legume N2 fixation through plant and soil management. Plant Soil 174:83–101. doi:10.1007/978-94-011-0055-7_4

    Article  CAS  Google Scholar 

  2. Ozkoc I, Deliveli MH (2001) In vitro inhibition of the mycelial growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol 25:435–445. http://journals.tubitak.gov.tr/biology/issues/biy-01-25-4/biy-25-4-9-0012-1.pdf

  3. Singh PK, Singh M, Vyas D (2010) Biocontrol of Fusarium wilt of chickpea using arbuscular mycorrhizal fungi and Rhizobium leguminosarum biovar. Caryologia 63:349–353. doi:10.1080/00087114.2010.10589745

    Article  Google Scholar 

  4. Prasanna R, Triveni S, Bidyarania N, Babu S, Yadav K, Adak A, Khetarpal S, Pal M, Shivay YS, Saxena AK (2014) Evaluating the efficacy of cyanobacterial formulations and biofilmed inoculants for leguminous crops. Arch Agron Soil Sci 60:349–366. doi:10.1080/03650340.2013.792407

    Article  Google Scholar 

  5. Prasanna R, Adak A, Verma S, Bidyarani N, Babu S, Pal M, Shivay YS, Lata N (2015) Cyanobacterial inoculation in rice grown under flooded and SRI modes of cultivation elicits differential effects on plant growth and nutrient dynamics. Ecol Eng 84:532–541. doi:10.1016/j.ecoleng.2015.09.033

    Article  Google Scholar 

  6. Seneviratne G, Jayasinghearachchi HS (2005) A rhizobial biofilm with nitrogenase activity alters nutrient availability in soil. Soil Biol Biochem 37:1975–1978. doi:10.1016/j.soilbio.2005.02.027

    Article  CAS  Google Scholar 

  7. Triveni S, Prasanna R, Shukla L, Saxena AK (2013) Evaluating the biochemical traits of novel Trichoderma-based biofilms for use as plant growth-promoting inoculants. Ann Microbiol 63:1147–1156. doi:10.1007/s13213-012-0573-x

    Article  CAS  Google Scholar 

  8. Triveni S, Prasanna R, Kumar A, Bidyarani N, Singh R, Saxena AK (2015) Evaluating the promise of Trichoderma and Anabaena based biofilms as multifunctional agents in Macrophomina phaseolina-infected cotton crop. Biocontrol Sci Technol 25:656–670. doi:10.1080/09583157.2015.1006171

    Article  Google Scholar 

  9. Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890. doi:10.3201/eid0809.020063

    Article  PubMed  PubMed Central  Google Scholar 

  10. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745. doi:10.1146/annurev.mi.49.100195.003431

    Article  CAS  PubMed  Google Scholar 

  11. Stewart PS (2002) Mechanisms of antibiotic resistance in bacterial biofilms. Int J Med Microbiol 292:107–113. doi:10.1078/1438-4221-00196

    Article  CAS  PubMed  Google Scholar 

  12. Rafique M, Hayat K, Mukhtar T, Khan AA, Afridi MS, Hussain T, Sultan T, Munis MFH, Imran, M, Chaudhary HJ (2015) Bacterial biofilm formation and its role against agricultural pathogens. In: Méndez-Vilas A (ed) The battle against microbial pathogens: basic science, technological advances and educational programs. Formatex Research Centre, Spain, pp 373–382

  13. Gamalero E, Lingua G, Berta G, Lemanceau P (2003) Methods for studying root colonization by introduced beneficial bacteria. Agronomie 23:407–418. doi:10.1051/agro:2003014

    Article  CAS  Google Scholar 

  14. Kohlmeier S, Smits THM, Ford RM, Keel C, Harms H, Wick LY (2005) Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. Environ Sci Technol 39:4640–4646. doi:10.1021/es047979z

    Article  CAS  PubMed  Google Scholar 

  15. Warmink JA, van Elsas JD (2009) Migratory response of soil bacteria to Lyophyllum sp. strain Karsten in soil microcosms. Appl Env Microbiol 75:2820–2830. doi:10.1128/AEM.02110-08

    Article  CAS  Google Scholar 

  16. Seneviratne G (2003) Development of eco-friendly, beneficial microbial biofilms. Curr Sci 85:1395–1396. http://www.iisc.ernet.in/currsci/nov252003/1395a.pdf. Accessed 23 June 2016

  17. Arfaoui A, Sifi B, Boudabous A, Hadrami IE, Chérif M (2006) Identification of Rhizobium isolates possessing antagonistic activity against Fusarium oxysporum f. sp. ciceris, the causal agent of Fusarium wilt of chickpea. J Plant Pathol 88:67–75. doi:10.4454/jpp.v88i1.832

    CAS  Google Scholar 

  18. Essalmani H, Lahlou H (2003) Bioprotection mechanisms of the lentil plant by Rhizobium leguminosarum against Fusarium oxysporum f. sp. lentis. CR Biol 326:1163–1173. doi:10.1016/j.crvi.2003.10.003

    Article  Google Scholar 

  19. Huang HC, Erickson RS (2007) Effect of seed treatment with Rhizobium leguminosarum on Pythium damping-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J Phytopathol 155:31–37. doi:10.1111/j.1439-0434.2006.01189.x

    Article  Google Scholar 

  20. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3. Biotech 5:355–377. doi:10.1007/s13205-014-0241-x

    Google Scholar 

  21. Arfaoui A, Hadrami AE, Mabrouk Y, Sifi B, Boudabous A, Hadrami IE, Daayf F, Chérif M (2007) Treatment of chickpea with Rhizobium isolates enhances the expression of phenylpropanoid defense-related genes in response to infection by Fusarium oxysporum f. sp. ciceri. Plant Physiol Biochem 45:470–479. doi:10.1016/j.plaphy.2007.04.004

    Article  CAS  PubMed  Google Scholar 

  22. Mabrouk Y, Zourgui L, Sifi B, Delavault P, Simier P, Belhadj O (2007) Some compatible Rhizobium leguminosarum strains in peas decrease infections when parasitised by Orobanche crenata. Weed Res 47:44–53. doi:10.1111/j.1365-3180.2007.00548.x

    Article  Google Scholar 

  23. Osdaghi E, Shams-Bakhsh M, Alizadeh A, Lak MR, Malek HH (2011) Induction of resistance in common bean by Rhizobium leguminosarum bv. phaseoli and decrease of common bacterial blight. Phytopathol Mediterr 50:45–54. doi:10.14601/Phytopathol_Mediterr-8524

    Google Scholar 

  24. Bandara WMMS, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650. doi:10.1007/BF02708417

    Article  CAS  PubMed  Google Scholar 

  25. Jayasinghearachchi HS, Seneviratne G (2004) A bradyrhizobial-Penicillium spp. biofilm with nitrogenase activity improves N2 fixing symbiosis of soybean. Biol Fertil Soils 40:432–434. doi:10.1007/s00374-004-0796-5

    Article  CAS  Google Scholar 

  26. Hettiarachchi RP, Dharmakeerthi RS, Jayakody AN, Seneviratne G, De Silva E, Gunathilake T, Thewarapperuma A (2014) Effectiveness of fungal bacterial interactions as biofilmed biofertilizers on enhancement of root growth of Hevea seedlings. J Env Prof Sri Lanka 3:25–40. doi:10.4038/jepsl.v3i2.7844

    Article  Google Scholar 

  27. Triveni S, Prasanna R, Saxena AK (2012) Optimization of conditions for in vitro development of Trichoderma viride based biofilms as potential inoculants. Folia Microbiol 57:431–437. doi:10.1007/s12223-012-0154-1

    Article  CAS  Google Scholar 

  28. Landa BB, Hervas A, Bethiol W, Jimenez-Diaz RM (1997) Antagonistic activity of bacteria from the chickpea rhizosphere against Fusarium oxysporum f. sp. ciceri. Phytoparasitica 25:305–318. doi:10.1007/BF02981094

    Article  Google Scholar 

  29. Whipps JM (2001) Microbiol interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511. doi:10.1093/jexbot/52.suppl_1.487

    Article  CAS  PubMed  Google Scholar 

  30. Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457. doi:10.1016/0038-0717(87)90037-X

    Article  CAS  Google Scholar 

  31. Dye DW (1962) The inadequacy of the usual determinative tests for identification of Xanthomonas sp. N Z J Sci 5:393–416. www.cabdirect.org/abstracts/19631101875.html. Accessed 23 June 2016

  32. Hartmann A, Singh M, Klingmfiller W (1983) Isolation and characterization of Azospirillum mutants excreting high amount of indole acetic acid. J Microbiol 29:916–923. doi:10.1139/m83-147

    CAS  Google Scholar 

  33. King JE (1932) The colorimetric determination of phosphorus. Biochem J 26:292–297. doi:10.1042/bj0260292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jackson ML (1967) Soil chemical analysis. Prentice Hall of India Pvt. Ltd, New Delhi

    Google Scholar 

  35. Cachinero JM, Hervás A, Jiménez-Díaz RM, Tena M (2002) Plant defence reactions against Fusarium wilt in chickpea induced by incompatible race 0 of Fusarium oxysporum f. sp. ciceris and non-host isolates of F. oxysporum. Plant Pahol 51:765–776. doi:10.1046/j.1365-3059.2002.00760.x

    Google Scholar 

  36. Hardy RWF, Burns RC, Holsten RD (1973) Application of the acetylene-ethylene assay for measurements of nitrogen fixation. Soil Biol Biochem 5:47–81. doi:10.1016/0038-0717(73)90093-X

    Article  CAS  Google Scholar 

  37. Sadasivam S, Manickam A (1991) Biochemical methods. New Age International Publishers, Chennai, p 256

    Google Scholar 

  38. Thimmaiah SK (1999) Standard methods of biochemical analysis. Kalyani Publishers, New Delhi, p 545

    Google Scholar 

  39. Nobbe F, Hiltner L (1896) U. S. Patent 570 813. Inoculation of the soil for cultivating leguminous plants

  40. Chandler D, Davidso G, Grant WP, Greaves J, Tatchell GM (2008) Microbial bio pesticides for integrated crop management: an assessment of environmental and regulatory sustainability. Trends Food Sci Tech 19:275–283. doi:10.1016/j.tifs.2007.12.009

    Article  CAS  Google Scholar 

  41. Kelemu S, Thomas RJ, Moreno CX, Ocampo GI (1995) Strains of Bradyrhizobium from tropical forage legumes inhibit Rhizoctonia solani AG1 in vitro. Australas Plant Pathol 24:168–172. doi:10.1071/APP9950168

    Article  Google Scholar 

  42. Deshwal VK, Dubey RC, Maheshwari DK (2003) Isolation of plant growth-promoting strains of Bradyrhizobium (Arachis) sp. with biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr Sci 84:443–448. http://www.iisc.ernet.in/currsci/feb102003/443.pdf. Accessed 23 June 2016

  43. Bardin SD, Huang HC, Pinto J, Amundsen EJ, Erickson RS (2004) 0 Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Bot 82:291–296. doi:10.1139/b04-003

    Article  Google Scholar 

  44. Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strains of Rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 81:673–677. http://www.iisc.ernet.in/currsci/sep252001/673.pdf Accessed 23 June 2016

  45. Chandra S, Choure K, Dubey RC, Maheshwari DK (2007) Rhizosphere competent Mesorhizobium loti MP6 induces root hair curling, inhibits Sclerotiniasclerotiorum and enhances growth of Indian mustard (Brassica campestris). Braz J Microbiol 38:128–130. doi:10.1590/S1517-83822007000100026

    Article  Google Scholar 

  46. Davey MA, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867. doi:10.1128/MMBR.64.4.847-867.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qurashi AW, Sabri AN (2012) Bacterial exopolysaccharide and biofilm formation stimulate chickpea growth and soil aggregation under salt stress. Braz J Microbiol 43:1183–1191. doi:10.1590/S1517-838220120003000046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Buddhika UVA, Seneviratne G, Abayasekara CL (2014) Fungal-bacterial biofilms differ from bacterial monocultures in seed germination and indole acetic acid production. Int J Sci Res Publ 4:1–5. http://www.ijsrp.org/research-paper-0114/ijsrp-p2551.pdf. Accessed 23 June 2016

  49. Seneviratne G, Keeskes ML, Kennedy IR (2008) Biofilmedbiofertilizers: novel inoculants for efficient use in plants. In: Kenedyetal, IR (ed) Efficient nutrient use in rice production in Vietnam achieved using inoculant as biofertilizers, Proceedings of a project (SMCN/2002/073) workshop held in Hanoi, Vietnam, pp 126–130

  50. Chauhan JS, Tomar YK, Singh IN, Ali S, Debarati A (2009) Effect of growth hormones on seed germination and seedling growth of black gram and horse gram. J Am Sci 5:79–84. http://www.jofamericanscience.org/journals/am-sci/0505/10_0901_growth_hormones_am0505.pdf. Accessed 24 June 2016

  51. Roychowdhury R, Mamgain A, Ray S, Tah J (2012) Effect of gibberellic acid, kinetin and indole 3-acetic acid on seed germination performance of Dianthus caryophyllus (Carnation). Agric Conspec Sci 77:157–160. https://acs.agr.hr/acs/index.php/acs/article/view/781. Accessed 23 June 2016

  52. Cassán FD, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35. doi:10.1016/j.ejsobi.2008.08.005

    Article  Google Scholar 

  53. Spaepen S, Vandrleyden J, Remans R (2007) Indole-3- acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448. doi:10.1111/j.1574-6976.2007.00072.x

    Article  CAS  PubMed  Google Scholar 

  54. Lee J, Jayaramann A, Wood TK (2007) Indole is an interspecies biofilm signal mediated by SdiA. BMC Microbiol 7:42. doi:10.1186/1471-2180-7-42

    Article  PubMed  PubMed Central  Google Scholar 

  55. Halder AK, Chakrabarty PK (1993) Solubilization of inorganic phosphate by Rhizobium. Folia Microbiol 38:325–330. doi:10.1186/1471-2180-7-42

    Article  CAS  Google Scholar 

  56. Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586. doi:10.1023/A:1026037216893

    Article  CAS  Google Scholar 

  57. Jayasinghearachchi HS, Seneviratne G (2006) Fungal solubilization of rock phosphate is enhanced by forming fungal–rhizobial biofilms. Soil Biol Biochem 38:405–408. doi:10.1016/j.soilbio.2005.06.004

    Article  CAS  Google Scholar 

  58. Ehteshamul-Haque S, Ghaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163. doi:10.1111/j.1439-0434.1993.tb01372.x

    Article  Google Scholar 

  59. Ganesan S, Kuppusamy RG, Sekar R (2007) Integrated management of stem rot disease (Sclerotium rolfsii) of groundnut (Arachishypogaea L. ) using Rhizobium and Trichoderma harzianum (ITCC–4572). Turk J Agric For 31:103–108. http://journals.tubitak.gov.tr/agriculture/issues/tar-07-31-2/tar-31-2-3-0609-15.pdf. Accessed 23 June 2016

  60. Shaban WI, El-Bramawy MA (2011) Impact of dual inoculation with Rhizobium and Trichodermaon damping off, root rot diseases and plant growth parameters of some legumes field crop under greenhouse conditions. Int Res J Agric Sci Soil Sci 1:98–108. http://www.interesjournals.org/IRJAS. Accessed 25 June 2016

  61. Sivakumar G, Sharma RC (2003) Induced biochemical changes due to seed bacterization by Pseudomonas fluorescens in maize plants. Indian Phytopathol 56:134–137. http://epubs.icar.org.in/ejournal/index.php/IPPJ/article/viewFile/18279/8820 Accessed 23 June 2016

  62. Dutta S, Mishra AK, Kumar BSD (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461. doi:10.1016/j.soilbio.2007.09.009

    Article  CAS  Google Scholar 

  63. Chiarini L, Bevivino A, Tabacchioni S, Dalmastri C (1998) Inoculation of Burkholderia cepacia, Pseudomonas fluorescens and Enterobacter sp. on Sorghum bicolor: root colonization and plant growth promotion of dual strain inocula. Soil Biol Biochem 30:81–87. doi:10.1016/S0038-0717(97)00096-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Council of Scientific and Industrial Research (CSIR), Human Resource Development Group, Govt. of India for providing fellowship towards PhD program to the first author. We are thankful to the Division of Microbiology and the National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Saxena.

Ethics declarations

Conflict of interest

The authors state no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1

Supplementary Fig. 1 Development of Rhizobium based biofilmed formulation using Trichoderma viride as fungal matrix. Biofilm growth at (a) Day 2; (b) Day 7; (c) Day 14. (d) Harvested biofilm after 14 days of incubation (PPTX 548 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, K., Rajawat, M.V.S., Saxena, A.K. et al. Development of Mesorhizobium ciceri-Based Biofilms and Analyses of Their Antifungal and Plant Growth Promoting Activity in Chickpea Challenged by Fusarium Wilt. Indian J Microbiol 57, 48–59 (2017). https://doi.org/10.1007/s12088-016-0610-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-016-0610-8

Keywords

Navigation