Skip to main content
Log in

Production of Polyhydroxyalkanoate Co-polymer by Bacillus thuringiensis

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Integrative processes for the production of bioenergy and biopolymers are gaining importance in recent years as alternatives to fossil fuels and synthetic plastics. In the present study, Bacillus thuringiensis strain EGU45 has been used to generate hydrogen (H2), polyhydroxybutyrate (PHB) and new co-polymers (NP). Under batch culture conditions with 250 ml synthetic media, B. thuringiensis EGU45 produced up to 0.58 mol H2/mol of glucose. Effluent from the H2 production stage was incubated under shaking conditions leading to the production of PHB up to 95 mg/l along with NP of levulinic acid up to 190 mg/l. A twofold to fourfold enhancement in PHB and up to 1.5 fold increase in NP yields was observed on synthetic medium (mixture of M-9+GM-2 medium in 1:1 ratio) containing at 1–2 % glucose concentration. The novelty of this work lies in developing modified physiological conditions, which induce bacterial culture to produce NP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419

    Article  PubMed  CAS  Google Scholar 

  2. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Factories 8:38

    Article  Google Scholar 

  3. Hallenbeck PC, Ghosh D, Skonieczny MT, Yargeau V (2009) Microbiological and engineering aspects of biohydrogen production. Indian J Microbiol 49:48–59

    Article  PubMed  CAS  Google Scholar 

  4. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451

    Article  PubMed  CAS  Google Scholar 

  5. Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423

    Article  PubMed  CAS  Google Scholar 

  6. Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  PubMed  CAS  Google Scholar 

  7. Ntaikou I, Kourmentza C, Koutrouli EC, Stamatelatou K, Zampraka A, Kornaros M, Lyberatos G (2009) Exploitation of olive oil mill wastewater for combined hydrogen and biopolymer production. Bioresour Technol 100:3724–3730

    Article  PubMed  CAS  Google Scholar 

  8. Venkata Mohan S, Reddy MV, Subhash GV, Sarma PN (2010) Fermentative effluents from hydrogen producing bioreactor as substrate for poly(β-OH) butyrate production with simultaneous treatment: an integrated approach. Bioresour Technol 101:9382–9386

    Article  PubMed  CAS  Google Scholar 

  9. Yan Q, Zhao M, Miao H, Ruan W, Song R (2010) Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresour Technol 101:4508–4512

    Article  PubMed  CAS  Google Scholar 

  10. Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156

    Article  PubMed  CAS  Google Scholar 

  11. Kalia VC, Chauhan A, Bhattacharyya G, Rashmi (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846

    Article  PubMed  CAS  Google Scholar 

  12. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023

    Article  PubMed  CAS  Google Scholar 

  13. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225

    Article  CAS  Google Scholar 

  14. Tajima K, Igari T, Nishimura D, Nakamura M, Satoh Y, Munekata M (2003) Isolation and characterization of Bacillus sp. INT005 accumulating polyhydroxyalkanoate (PHA) from gas field soil. J Biosci Bioeng 95:77–81

    PubMed  CAS  Google Scholar 

  15. Valappil SP, Rai R, Bucka C, Roy I (2008) Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved. J Appl Microbiol 104:1624–1635

    Article  PubMed  CAS  Google Scholar 

  16. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy 35:10674–10681

    Article  CAS  Google Scholar 

  17. Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shell) into hydrogen and methane through anaerobic digestion. Bioresour Technol 53:165–168

    Article  CAS  Google Scholar 

  18. Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603

    Article  CAS  Google Scholar 

  19. Patel SKS, Kalia VC (2012) Integrative biological hydrogen production: an overview. Indian J Microbiol. doi:10.1007/s12088-012-0287-6

    PubMed  Google Scholar 

  20. Kalia VC, Raizada N, Sonakya V (2000) Bioplastics. J Sci Ind Res 59:433–445

    CAS  Google Scholar 

  21. Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Fermentation of biowaste to hydrogen by Bacillus licheniformis. World J Microbiol Biotechnol 10:224–227

    Article  CAS  Google Scholar 

  22. Labuzek S, Radecka I (2001) Biosynthesis of copolymers of PHB tercopolymer by Bacillus cereus UW85 strain. J Appl Microbiol 90:353–357

    Article  PubMed  CAS  Google Scholar 

  23. Mizuno K, Ohta A, Hyakutake M, Ichinomiya Y, Tsuge T (2010) Isolation of polyhydroxyalkanoate-producing bacteria from a polluted soil and characterization of the isolated strain Bacillus cereus YB-4. Polym Degrad Stab 95:1335–1339

    Article  CAS  Google Scholar 

  24. Van der Voort M, Abee T (2009) Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579. J Appl Microbiol 107:795–804

    Article  PubMed  Google Scholar 

  25. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140

    Article  PubMed  CAS  Google Scholar 

  26. Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and -lactonase. Open Microbiol J 5:1–13

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Director of CSIR-Institute of Genomics and Integrative Biology and Department of Biotechnology, Government of India for providing the necessary funds, facilities and moral support. M. Singh and P. Kumar are thankful to UGC and CSIR for Senior Research Fellowships and S.K.S. Patel to CSIR for Research Associate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. S. Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, M., Kumar, P., Patel, S.K.S. et al. Production of Polyhydroxyalkanoate Co-polymer by Bacillus thuringiensis . Indian J Microbiol 53, 77–83 (2013). https://doi.org/10.1007/s12088-012-0294-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-012-0294-7

Keywords

Navigation