Skip to main content
Log in

Response of Different Antibiotic Resistant Group of Streptococcus pyogenes to Environmental Stresses

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Streptococcus species is considered as an important pathogen for human and animals. The antibiotic resistance mechanism in this species is continuously increased. On the other side, the tolerance of environmental stresses play an effective role in the severity of many streptococcal causative disease. In this study we assayed survey on the causative agents of pharyngitis and tonsillitis patients. The predominant causative strain was Streptococcus pyogenes with 93 % isolating ratio frequency. The other pathogenic species were S. agalactia 5.3 % and S. pneumonia 1.7 %. According to the antibiotic resistant test the S. pyogenes isolates were classified into six different groups. A selected strain from each antibiotic resistant group was tested for tolerance of a restrictive environmental factors. The variations of the environmental niches of isolates were in consistence with their antibiotic resistant variation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Cunningham MW (2000) Pathogenesis of group A streptococcal infections. Clin Microbiol Rev 13:470–511

    Article  PubMed  CAS  Google Scholar 

  2. Russo FD, Silhavy TJ (1993) The essential tension: opposed reactions in bacterial two-component regulatory systems. Trends Microbiol 1:306–310

    Article  PubMed  CAS  Google Scholar 

  3. Hoch JA (2000) Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170

    Article  PubMed  CAS  Google Scholar 

  4. Tracy DL, Scott JR (2004) CovS inactivates CovR and is required for growth under conditions of general stress in Streptococcus pyogenes. J Bacteriol 186(12):3928–3937

    Article  Google Scholar 

  5. Nelson K, Schlievert PM, Selander RK, Musser JM (1991) Characterization and clonal distribution of four alleles of the speA gene encoding pyrogenic exotoxin A (scarlet fever toxin) in Streptococcus pyogenes. J Exp Med 174:1271–1274

    Article  PubMed  CAS  Google Scholar 

  6. Musser JM, Krause RM (1998) The revival of group A streptococcal diseases, with a commentary on staphylococcal toxic shock syndrome. In: Krause RM (ed) Emerging infections. Academic Press, New York, pp 185–218

    Chapter  Google Scholar 

  7. Schuchat A (2001) Group B streptococcal disease: from trials and tribulations to triumph and trepidation. Clin Infect Dis 33:751–756

    Article  PubMed  CAS  Google Scholar 

  8. Bisno AL, Gerber MA, Gwaltney JM Jr, Kaplan EL, Schwartz RH (2002) Practice guidelines for the diagnosis and management of group A streptococcal pharyngitis. Clin Infect Dis 35:113–125

    Article  PubMed  Google Scholar 

  9. Ruoff KL, Whiley RA, Beighton D (2003) Streptococcus. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (eds) Manual of clinical microbiology, 8th edn. American Society for Microbiology, Washington, pp 405–421

    Google Scholar 

  10. Traub WH, Leonhard B (1997) Comparative susceptibility of clinical group A, B, C, F, and G β-hemolytic streptococcal isolates to 24 antimicrobial drugs. Chemotherapy 43:10–20

    Article  PubMed  CAS  Google Scholar 

  11. Gordon KA, Beach ML, Biedenbach DJ, Jones RN, Rhomberg PR, Mutnick AH (2002) Antimicrobial susceptibility patterns of β-hemolytic and viridans group streptococci: report from the SENTRY antimicrobial surveillance program (1997–2000). Diagn Microbiol Infect Dis 43:157–162

    Article  PubMed  CAS  Google Scholar 

  12. Biedenbach DJ, Stephen JM, Jones RN (2003) Antimicrobial susceptibility profile among β-haemolytic Streptococcus spp. collected in the SENTRY antimicrobial surveillance program-North America (2001). Diagn Microbiol Infect Dis 46:291–294

    Article  PubMed  CAS  Google Scholar 

  13. Bergey’s (1983) Manual of systematic bacteriology, 8th edn. William and Wilkins, Co, Baltimor

    Google Scholar 

  14. Silverstein RM (1975) The determination of human plasminogen using Nα–CBZ-l-lysine p-nitrophenyl ester as substrate. Anal Biochem 65:500–506

    Article  PubMed  CAS  Google Scholar 

  15. Bauer AW, Kirby WMM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Pathology 49:493–496

    Google Scholar 

  16. Kim HY, Uh Y (2004) Macrolide resistance in β-hemolytic streptococci: changes after the implementation of the separation of prescribing and dispensing of medications policy in Korea. Yonsei Med J 45:591–597

    PubMed  Google Scholar 

  17. Brahmadathan KN, Anitha P, Gladstone P (2005) Increasing erythromycin resistance among group A streptococci causing tonsillitis in a tertiary care hospital in southern India. Clin Microbiol Infect 11:335–337

    Article  PubMed  CAS  Google Scholar 

  18. Baldassarri L, Creti R, Recchia S, Imperi M, Facinelli B, Giovanetti E, Pataracchia M, Alfarone G, Orefici G (2006) Therapeutic failures of antibiotics used to treat macrolide-susceptible Streptococcus pyogenes infections may be due to biofilm formation. J Clin Microbiol 44(8):2721–2727

    Article  PubMed  CAS  Google Scholar 

  19. Sato T, Tateda K, Kimura S, Iwata M, Ishii Y, Yamaguchi K (2011) In vitro antibacterial activity of modithromycin, a novel 6,11-bridged bicyclolide, against respiratory pathogens, including macrolide-resistant gram-positive cocci. Antimicrob Agents Chemother 55(4):1588–1593

    Article  PubMed  CAS  Google Scholar 

  20. Uh Y, Yong D, Lee K, Kwon O, Yoon KJ (2005) Emergence of erythromycin-resistant Streptococcus agalactiae serotype V is due to clonal spread. Korean J Lab Med 25:564

    Google Scholar 

  21. Uh Y, Hwang GY (2007) In: Jang H, Cho HM, Noh SM, Kim HY, Kwon O, Yoon KJ (eds) Macrolide resistance trends in β-hemolytic streptococci in a tertiary Korean hospital. Yonsei Med J 48(5): 773–778. doi:10.3349/ymj.2007.48.5.773

    Google Scholar 

  22. Bacciaglia A, Brenciani A, Varaldo PE, Giovanetti E (2007) SmaI type ability and tetracycline susceptibility and resistance in Streptococcus pyogenes isolates with efflux-mediated erythromycin resistance. Antimicrob Agents Chemother 51(8):3042–3043

    Article  PubMed  CAS  Google Scholar 

  23. Chaussee MS, Ajdic D, Ferretti JJ (1999) The rgg gene of Streptococcus pyogenes NZ131 positively influences extracellular SPE B production. Infect Immun 67:1715–1722

    PubMed  CAS  Google Scholar 

  24. Chaussee MS, Watson RO, Smoot JC, Musser JM (2001) Identification of Rgg-regulated exoproteins of Streptococcus pyogenes. Infect Immun 69:822–831

    Article  PubMed  CAS  Google Scholar 

  25. Chaussee MS, Somerville GA, Reitzer L, Musser JM (2003) Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes. J Bacteriol 185:6016–6024

    Article  PubMed  CAS  Google Scholar 

  26. Smoot LM, Smoot JC, Graham MR, Somerville GA, Sturdevant DE, Lux Migliaccio CA, Sylva GL, Musser JM (2001) Global differential gene expression in response to growth temperature alteration in group A streptococcus. PNAS 98(18):10416–10421

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed El-Shahat Ebeid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abbas, N., Ismail, M. & El-Shahat Ebeid, M. Response of Different Antibiotic Resistant Group of Streptococcus pyogenes to Environmental Stresses. Indian J Microbiol 52, 354–359 (2012). https://doi.org/10.1007/s12088-012-0273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-012-0273-z

Keywords

Navigation