Skip to main content
Log in

Global transcriptomic analysis of induced cardiomyocytes predicts novel regulators for direct cardiac reprogramming

  • Nuts and Bolts
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Heart diseases are the most significant cause of morbidity and mortality in the world. De novo generated cardiomyocytes (CMs) are a great cellular source for cell-based therapy and other potential applications. Direct cardiac reprogramming is the newest method to produce CMs, known as induced cardiomyocytes (iCMs). During a direct cardiac reprogramming, also known as transdifferentiation, non-cardiac differentiated adult cells are reprogrammed to cardiac identity by forced expression of cardiac-specific transcription factors (TFs) or microRNAs. To this end, many different combinations of TFs (±microRNAs) have been reported for direct reprogramming of mouse or human fibroblasts to iCMs, although their efficiencies remain very low. It seems that the investigated TFs and microRNAs are not sufficient for efficient direct cardiac reprogramming and other cardiac specific factors may be required for increasing iCM production efficiency, as well as the quality of iCMs. Here, we analyzed gene expression data of cardiac fibroblast (CFs), iCMs and adult cardiomyocytes (aCMs). The up-regulated and down-regulated genes in CMs (aCMs and iCMs) were determined as CM and CF specific genes, respectively. Among CM specific genes, we found 153 transcriptional activators including some cardiac and non-cardiac TFs that potentially activate the expression of CM specific genes. We also identified that 85 protein kinases such as protein kinase D1 (PKD1), protein kinase A (PRKA), calcium/calmodulin-dependent protein kinase (CAMK), protein kinase C (PRKC), and insulin like growth factor 1 receptor (IGF1R) that are strongly involved in establishing CM identity. CM gene regulatory network constructed using protein kinases, transcriptional activators and intermediate proteins predicted some new transcriptional activators such as myocyte enhancer factor 2A (MEF2A) and peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PPARGC1A), which may be required for qualitatively and quantitatively efficient direct cardiac reprogramming. Taken together, this study provides new insights into the complexity of cell fate conversion and better understanding of the roles of transcriptional activators, signaling pathways and protein kinases in increasing the efficiency of direct cardiac reprogramming and maturity of iCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ali SR, Ranjbarvaziri S, Talkhabi M, Zhao P, Subat A, Hojjat A, Kamran P, Müller AM, Volz KS, Tang Z (2014) Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and ActivationNovelty and significance. Circ Res 115(7):625–635

    Article  CAS  PubMed  Google Scholar 

  • Bai F, Lim CH, Jia J, Santostefano K, Simmons C, Kasahara H, Wu W, Terada N, Jin S (2015) Directed differentiation of embryonic stem cells into cardiomyocytes by bacterial injection of defined transcription factors. Sci Rep 5:15014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berger SI, Posner JM, Ma’ayan A (2007) Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases. BMC Bioinf 8(1):1

    Article  Google Scholar 

  • Christoforou N, Chellappan M, Adler AF, Kirkton RD, Wu T, Addis RC, Bursac N, Leong KW (2013) Transcription factors MYOCD, SRF, Mesp1 and SMARCD3 enhance the cardio-inducing effect of GATA4, TBX5, and MEF2C during direct cellular reprogramming. PLoS One 8(5):e63577

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixon JE, Dick E, Rajamohan D, Shakesheff KM, Denning C (2011) Directed differentiation of human embryonic stem cells to interrogate the cardiac gene regulatory network. Mol Ther 19(9):1695–1703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Essaghir A, Toffalini F, Knoops L, Kallin A, van Helden J, Demoulin J-B (2010) Transcription factor regulation can be accurately predicted from the presence of target gene signatures in microarray gene expression data. Nucleic Acids Res 38(11):e120–e120

    Article  PubMed  PubMed Central  Google Scholar 

  • Ewen EP, Snyder CM, Wilson M, Desjardins D, Naya FJ (2011) The Mef2A transcription factor coordinately regulates a costamere gene program in cardiac muscle. J Biol Chem 286(34):29644–29653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Festuccia N, Osorno R, Halbritter F, Karwacki-Neisius V, Navarro P, Colby D, Wong F, Yates A, Tomlinson SR, Chambers I (2012) Esrrb is a direct Nanog target gene that can substitute for Nanog function in pluripotent cells. Cell Stem Cell 11(4):477–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fonoudi H, Ansari H, Abbasalizadeh S, Larijani MR, Kiani S, Hashemizadeh S, Zarchi AS, Bosman A, Blue GM, Pahlavan S (2015) A universal and robust integrated platform for the scalable production of human cardiomyocytes from pluripotent stem cells. Stem Cells Transl Med 4(12):1482–1494

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghosh JC, Siegelin MD, Vaira V, Faversani A, Tavecchio M, Chae YC, Lisanti S, Rampini P, Giroda M, Caino MC (2015) Adaptive mitochondrial reprogramming and resistance to PI3K therapy. J Natl Cancer Inst 107(3):dju502

    Article  PubMed  PubMed Central  Google Scholar 

  • Goffart S, von Kleist-Retzow J-C, Wiesner RJ (2004) Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res 64(2):198–207

    Article  CAS  PubMed  Google Scholar 

  • Hirai H, Katoku-Kikyo N, Keirstead SA, Kikyo N (2013) Accelerated direct reprogramming of fibroblasts into cardiomyocyte-like cells with the MyoD transactivation domain. Cardiovasc Res. doi:10.1093/cvr/cvt167

    PubMed  PubMed Central  Google Scholar 

  • Ieda M, Fu J-D, Delgado-Olguin P, Vedantham V, Hayashi Y, Bruneau BG, Srivastava D (2010) Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142(3):375–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islas JF, Liu Y, Weng K-C, Robertson MJ, Zhang S, Prejusa A, Harger J, Tikhomirova D, Chopra M, Iyer D (2012) Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci 109(32):13016–13021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakob P, Landmesser U (2013) Current status of cell-based therapy for heart failure. Curr Heart Fail Rep 10(2):165–176

    Article  CAS  PubMed  Google Scholar 

  • Jayawardena TM, Egemnazarov B, Finch EA, Zhang L, Payne JA, Pandya K, Zhang Z, Rosenberg P, Mirotsou M, Dzau VJ (2012) MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to CardiomyocytesNovelty and significance. Circ Res 110(11):1465–1473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachmann A, Ma'ayan A (2009) KEA: kinase enrichment analysis. Bioinformatics 25(5):684–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lachmann A, Xu H, Krishnan J, Berger SI, Mazloom AR, Ma'ayan A (2010) ChEA: transcription factor regulation inferred from integrating genome-wide ChIP-X experiments. Bioinformatics 26(19):2438–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalit PA, Salick MR, Nelson DO, Squirrell JM, Shafer CM, Patel NG, Saeed I, Schmuck EG, Markandeya YS, Wong R (2016) Lineage reprogramming of fibroblasts into proliferative induced cardiac progenitor cells by defined factors. Cell Stem Cell 18(3):354–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowski SL, Janardhan HP, Smee KM, Bachman M, Sun Z, Lazar MA, Trivedi CM (2014) Histone deacetylase 3 modulates Tbx5 activity to regulate early cardiogenesis. Hum Mol Genet 23(14):3801–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J, Wu H, Tarr PT, Zhang C-Y, Wu Z, Boss O, Michael LF, Puigserver P, Isotani E, Olson EN (2002) Transcriptional co-activator PGC-1α drives the formation of slow-twitch muscle fibres. Nature 418(6899):797–801

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Lei I, Karatas H, Li Y, Wang L, Gnatovskiy L, Dou Y, Wang S, Qian L, Wang Z (2016) Targeting Mll1 H3K4 methyltransferase activity to guide cardiac lineage specific reprogramming of fibroblasts. Cell Discovery 2:16036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martello G, Sugimoto T, Diamanti E, Joshi A, Hannah R, Ohtsuka S, Göttgens B, Niwa H, Smith A (2012) Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 11(4):491–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mlody B, Prigione A (2016) A glycolytic solution for pluripotent stem cells. Cell Stem Cell 19(4):419–420

    Article  CAS  PubMed  Google Scholar 

  • Mohamed, T M, Stone NR, Berry EC, Radzinsky E, Huang Y, Pratt K, Ang Y-S, Yu P, Wang H Tang S (2016). Chemical enhancement of in vitro and in vivo direct cardiac reprogramming. Circulation: Circulationaha. 116.024692

  • Muraoka N, Yamakawa H, Miyamoto K, Sadahiro T, Umei T, Isomi M, Nakashima H, Akiyama M, Wada R, Inagawa K (2014) MiR-133 promotes cardiac reprogramming by directly repressing Snai1 and silencing fibroblast signatures. EMBO J 33(14):1565–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam Y-J, Song K, Luo X, Daniel E, Lambeth K, West K, Hill JA, DiMaio JM, Baker LA, Bassel-Duby R (2013) Reprogramming of human fibroblasts toward a cardiac fate. Proc Natl Acad Sci 110(14):5588–5593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paige SL, Plonowska K, Xu A, Wu SM (2015) Molecular regulation of cardiomyocyte differentiation. Circ Res 116(2):341–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prigione A, Rohwer N, Hoffmann S, Mlody B, Drews K, Bukowiecki R, Blümlein K, Wanker EE, Ralser M, Cramer T (2014) HIF1α modulates cell fate reprogramming through early glycolytic shift and upregulation of PDK1–3 and PKM2. Stem Cells 32(2):364–376

    Article  CAS  PubMed  Google Scholar 

  • Protze S, Khattak S, Poulet C, Lindemann D, Tanaka EM, Ravens U (2012) A new approach to transcription factor screening for reprogramming of fibroblasts to cardiomyocyte-like cells. J Mol Cell Cardiol 53(3):323–332

    Article  CAS  PubMed  Google Scholar 

  • Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B, Spiegelman BM (1999) Activation of PPARγ coactivator-1 through transcription factor docking. Science 286(5443):1368–1371

    Article  CAS  PubMed  Google Scholar 

  • Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu J-d, Srivastava D (2012) In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature 485(7400):593–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosselló RA, Chen C-C, Dai R, Howard JT, Hochgeschwender U, Jarvis ED (2013) Mammalian genes induce partially reprogrammed pluripotent stem cells in non-mammalian vertebrate and invertebrate species. elife 2:e00036

    Article  PubMed  PubMed Central  Google Scholar 

  • Rowe GC, Jiang A, Arany Z (2010) PGC-1 coactivators in cardiac development and disease. Circ Res 107(7):825–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadahiro T, Yamanaka S, Ieda M (2015) Direct cardiac reprogramming progress and challenges in basic Biology and clinical applications. Circ Res 116(8):1378–1391

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger J, Schueler M, Grunert M, Fischer JJ, Zhang Q, Krueger T, Lange M, Tönjes M, Dunkel I, Sperling SR (2011) The cardiac transcription network modulated by Gata4, Mef2a, Nkx2. 5, Srf, histone modifications, and microRNAs. PLoS Genet 7(2):e1001313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song K, Nam Y-J, Luo X, Qi X, Tan W, Huang GN, Acharya A, Smith CL, Tallquist MD, Neilson EG (2012) Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature 485(7400):599–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Später D, Hansson EM, Zangi L, Chien KR (2014) How to make a cardiomyocyte. Development 141(23):4418–4431

    Article  PubMed  Google Scholar 

  • Talkhabi M, Aghdami N, Baharvand H (2016) Human cardiomyocyte generation from pluripotent stem cells: a state-of-art. Life Sci 145:98–113

    Article  CAS  PubMed  Google Scholar 

  • Talkhabi M, Pahlavan S, Aghdami N, Baharvand H (2015) Ascorbic acid promotes the direct conversion of mouse fibroblasts into beating cardiomyocytes. Biochem Biophys Res Commun 463(4):699–705

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hodgkinson CP, Lu K, Payne AJ, Pratt RE, Dzau VJ (2016a) Selenium augments microRNA directed reprogramming of fibroblasts to cardiomyocytes via Nanog. Sci Rep 6. doi:10.1038/srep23017

  • Wang Y, Shi S, Liu H, Meng L (2016b) Hypoxia enhances direct reprogramming of mouse fibroblasts to cardiomyocyte-like cells. Cellular Reprogramming (Formerly" Cloning and Stem Cells") 18(1):1–7

    Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC (1999) Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98(1):115–124

    Article  CAS  PubMed  Google Scholar 

  • Xu XQ, Soo SY, Sun W, Zweigerdt R (2009) Global expression profile of highly enriched cardiomyocytes derived from human embryonic stem cells. Stem Cells 27(9):2163–2174

    Article  CAS  PubMed  Google Scholar 

  • Yamakawa H, Muraoka N, Miyamoto K, Sadahiro T, Isomi M, Haginiwa S, Kojima H, Umei T, Akiyama M, Kuishi Y (2015) Fibroblast growth factors and vascular endothelial growth factor promote cardiac reprogramming under defined conditions. Stem Cell Rep 5(6):1128–1142

    Article  CAS  Google Scholar 

  • Yanazume T, Hasegawa K, Morimoto T, Kawamura T, Wada H, Matsumori A, Kawase Y, Hirai M, Kita T (2003) Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol Cell Biol 23(10):3593–3606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Dickson ME, Kim MS, Bassel-Duby R, Olson EN (2015a) Akt1/protein kinase B enhances transcriptional reprogramming of fibroblasts to functional cardiomyocytes. Proc Natl Acad Sci 112(38):11864–11869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Li L, Zhao B, Guan K-L (2015b) The hippo pathway in heart development, regeneration, and diseases. Circ Res 116(8):1431–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Wang L, Vaseghi HR, Liu Z, Lu R, Alimohamadi S, Yin C, Fu J-D, Wang GG, Liu J (2016) Bmi1 is a key epigenetic barrier to direct cardiac reprogramming. Cell Stem Cell 18(3):382–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was completed with financial supported by Systems Biology of Next Generation Company (SBNGC) [grant no. SBNGC13950231], Qom, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mahmood Talkhabi or Ali Salari.

Ethics declarations

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talkhabi, M., Razavi, S.M. & Salari, A. Global transcriptomic analysis of induced cardiomyocytes predicts novel regulators for direct cardiac reprogramming. J. Cell Commun. Signal. 11, 193–204 (2017). https://doi.org/10.1007/s12079-017-0387-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-017-0387-5

Keywords

Navigation