Skip to main content
Log in

Different expression and subcellular localization of Phosphoinositide-specific Phospholipase C enzymes in differently polarized macrophages

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Macrophages’ phenotypic and functional diversity depends on differentiating programs related to local environmental factors. Recent interest was deserved to the signal transduction pathways acting in macrophage polarization, including the phosphoinositide (PI) system and related phospholipase C (PLC) family of enzymes. The expression panel of PLCs and the subcellular localization differs in quiescent cells compared to the pathological counterpart. We analyzed the expression of PLC enzymes in unpolarized (M0), as well as in M1 and M2 macrophages to list the expressed isoforms and their subcellular localization. Furthermore, we investigated whether inflammatory stimulation modified the basal panel of PLCs’ expression and subcellular localization. All PLC enzymes were detected within both M1 and M2 cells, but not in M0 cells. M0, as well as M1 and M2 cells own a specific panel of expression, different for both genes’ mRNA expression and intracellular localization of PLC enzymes. The panel of PLC genes’ expression and PLC proteins’ presence slightly changes after inflammatory stimulation. PLC enzymes might play a complex role in macrophages during inflammation and probably also during polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aki D, Minoda Y, Yoshida H, Watanabe S, Yoshida R, Takaesu G, Chinen T, Inaba T, Hikida M, Kurosaki T, Saeki K, Yoshimura A (2008) Peptidoglycan and lipopolysaccharide activate PLCgamma2, leading to enhanced cytokine production in macrophages and dendritic cells. Genes Cells 13:199e208

    Article  Google Scholar 

  • Akira S, Misawa T, Satoh T, Saitoh T (2013) Macrophages control innate inflammation. Diabetes Obes Metab 15(s3):10–18

    Article  CAS  PubMed  Google Scholar 

  • Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (1981) Phosphatidylinositol hydrolysis: amultifunctional transducing mechanism. Mol Cell Endocrinol 24(2):115–140

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793(6):933–940

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Irvine RF (1984) Inositol triphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321

    Article  CAS  PubMed  Google Scholar 

  • Beyer M, Mallmann MR, Xue J, Staratschek-Jox A, Vorholt D, Krebs W, Sommer D, Sander J, Mertens C, Nino-Castro A, Schmidt SV, Schultze JL (2012) High-resolution transcriptome of human macrophages. PLoS One 7(9), e45466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Botelho RJ, Teruel M, Dierckman R, Anderson R, Wells A, York JD, Meyer T, Grinstein S (2000) Localized biphasic changes in phosphatidylinositol-4,5-bisphosphate at sites of phagocytosis. J Cell Biol 151(7):1353–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bunney TD, Katan M (2011) PLC regulation: emerging pictures for molecular mechanisms. Trends Biochem Sci 36(2):88–96

    Article  CAS  PubMed  Google Scholar 

  • Calle Y, Burns S, Thrasher A, Jones G (2006) Eur J Cell Biol 85:151–157

    Article  CAS  PubMed  Google Scholar 

  • Carman C, Sage P, Sciuto T, de la Fuente M, Geha R, Ochs H, Dvorak H, Dvorak A, Springer T (2007) Immunity 26:784–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang ZL (2009) Recent development of the mononuclear phagocyte system: in memory of Metchnikoff and Ehrlich on the 100th Anniversary of the 1908 Nobel Prize in Physiology or Medicine. Biol Cell 101(12):709–721

    Article  CAS  PubMed  Google Scholar 

  • Comer FI, Parent CA (2007) Phosphoinositides specify polarity during epithelial organ development. Cell 128(2):239–240

    Article  CAS  PubMed  Google Scholar 

  • Daigneault M, Preston JA, Marriott HM, Whyte MK, Dockrell DH (2010) The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One 5(1), e8668. doi:10.1371/journal.pone.0008668

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans J, Matsudaira P (2006) Eur J Cell Biol 85:145–149

    Article  CAS  PubMed  Google Scholar 

  • Forbes SJ, Rosenthal N (2014) Preparing the ground for tissue regeneration: from mechanism to therapy. Nat Med 20:857–869

    Article  CAS  PubMed  Google Scholar 

  • Gordon S (2007) The macrophage: past, present and future. Eur J Immunol 37(Suppl 1):S9–S17

    Article  CAS  PubMed  Google Scholar 

  • Grinberg S, Hasko G, Wu D, Leibovich SJ (2009) Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A). receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. Am J Pathol 175(6):2439–2453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holian A (1986) Leukotriene B4 stimulation of phosphatidylinositol turnover in macrophages and inhibition by pertussis toxin. FEBS Lett 201(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Hwang JI, Oh YS, Shin KJ, Kim H, Ryu SH, Suh PG (2005) Molecular cloning and characterization of a novel phospholipase C, PLC ‐h. Biochem J 389:181–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanemaru K, Nakamura Y, Sato K, Kojima R, Takahashi S, Yamaguchi M, Ichinohe M, Kiyonari H, Shioi G, Kabashima K, Nakahigashi K, Asagiri M, Jamora C, Yamaguchi H, Fukami K. (2012) Epidermal phospholipase Cδ 1 regulates granulocyte counts and systemic interleukin-17 levels in mice. Nat Commun 17(3):963

  • Kim JK, Choi JW, Lim S, Kwon O, Seo JK, Ryu SH, Suh PG (2011) Phospholipase C‐h1 is activated by intracellular Ca2 mobilization and enhances GPCRs/PLC/Ca2 signaling. Cell Signal 23:1022–1029

    Article  CAS  PubMed  Google Scholar 

  • Liu DZ, Liang HJ, Chen CH, Lin SY, Zhong WB, Ho FM, Hou WC, Lo JL, Ho YS, Lin PJ, Hung LF, Liang YC (2007) Switch activation of PI-PLC downstream signals in activated macrophages with wortmannin. Biochim Biophys Acta 1773(6):869–879

    Article  CAS  PubMed  Google Scholar 

  • Lo Vasco VR, Fabrizi C, Artico M, Cocco L, Billi AM, Fumagalli L, Manzoli FA (2007) Expression of phosphoinositide-specific phospholipase C isoenzymes in cultured astrocytes. J Cell Biochem 100(4):952–959

    Article  CAS  PubMed  Google Scholar 

  • Lo Vasco VR, Fabrizi C, Panetta B, Fumagalli L, Cocco L (2010a) Expression pattern and sub cellular distribution of Phosphoinositide specific Phospholipase C enzymes after treatment with U-73122 in rat astrocytoma cells. J Cell Biochem 110(4):1005–1012

    Article  CAS  PubMed  Google Scholar 

  • Lo Vasco VR, Fabrizi C, Fumagalli L, Cocco L (2010b) Expression of phosphoinositide specific phospholipase C isoenzymes in cultured astrocytes activated after stimulation with Lipopolysaccharide. J Cell Biochem 109(5):1006–1012

    CAS  PubMed  Google Scholar 

  • Lo Vasco VR, Leopizzi M, Chiappetta C, Puggioni C, Della Rocca C, Businaro R (2013) Lypopolysaccharide down-regulates the expression of selected phospholipase C genes in cultured endothelial cells. Inflammation 36(4):862–868

    Article  CAS  PubMed  Google Scholar 

  • Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca CI, Businaro R (2014a) Neuropeptide Y significantly reduces the expression of PLCB2, PLCD1 and moderately decreases selected PLC genes in endothelial cells. Mol Cell Biochem 394(1-2):43–52

    Article  CAS  PubMed  Google Scholar 

  • Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C (2014b) Ezrin silencing remodulates the expression of Phosphoinositide-specific Phospholipase C enzymes in human osteosarcoma cell lines. J Cell Commun Signal 8(3):219–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo Vasco VR, Leopizzi M, Stoppoloni D, Della Rocca C (2014c) Silencing of phosphoinositide-specific phospholipase C ε remodulates the expression of the phosphoinositide signal transduction pathway in human osteosarcoma cell lines. Anticancer Res 34(8):4069–4075

    PubMed  Google Scholar 

  • Lo Vasco VR, Leopizzi M, Puggioni C, Della Rocca C, Businaro R (2014d) Fibroblast growth factor acts upon the transcription of phospholipase C genes in human umbilical vein endothelial cells. Mol Cell Biochem 388(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Lo Vasco VR, Leopizzi M, Della Rocca C (2015) Ezrin-related Phosphoinositide pathway modifies RhoA and Rac1 in human osteosarcoma cell lines. J Cell Commun Signal 9(1):55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23(11):549–555

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Reports 6, article 13

  • Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports 6:13

  • Martinez FO, Gordon S, Locati M, Mantovani A (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311

    Article  CAS  PubMed  Google Scholar 

  • Miyauchi A, Hruska K, Greenfield E, Duncan R, Alvarez J, Barattolo R, Colucci S, Zambonin-Zallone A, Teitelbaum S, Teti A (1990) J Cell Biol 111:2543–2552

    Article  CAS  PubMed  Google Scholar 

  • Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8:958–969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakahara M, Shimozawa M, Nakamura Y, Irino Y, Morita M, Kudo Y, Fukami K (2005) A novel phospholipase C, PLCh2, is a neuron‐specific isozyme. J Biol Chem 280:29128–29134

    Article  CAS  PubMed  Google Scholar 

  • Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18(3):363–374

    Article  CAS  PubMed  Google Scholar 

  • Pollard JW (2009) Trophic macrophages in development and disease. Nat Rev Immunol 9(4):259–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popovics P, Beswick W, Guild SB, Cramb G, Morgan K, Millar RP, Stewart AJ (2011) Phospholipase C‐h2 is activated by elevated intracellular Ca2 levels. Cell Signal 23:1777–1784

    Article  CAS  PubMed  Google Scholar 

  • Popovics P, Lu J, Nadia Kamil L, Morgan K, Millar RP, Schmid R, Blindauer CA, Stewart AJ (2014) A canonical EF-loop directs Ca(2+). -sensitivity in phospholipase C-η2. J Cell Biochem 115(3):557–565

    Article  CAS  PubMed  Google Scholar 

  • Rhee SG, Kim H, Suh PG, Choi WC (1991) Multiple forms of phosphoinositide-specific phospholipase C and different modes of activation. Biochem Soc Trans 19(2):337–41

  • Rőszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm 2015:816460

    Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart AJ, Mukherjee J, Roberts SJ, Lester D, Farquharson C (2005) Identification of a novel class of mammalian phosphoinositol‐specific phospholipase C enzymes. Int J Mol Med 15:117–121

    CAS  PubMed  Google Scholar 

  • Suh PG, Park J, Manzoli L, Cocco L, Peak JC, Katan M, Fukami K, Kataoka T, Yuk S, Ryu SH (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434

    Article  CAS  PubMed  Google Scholar 

  • Tang CH, Yang RS, Fu WM (2005) Prostaglandin E2 stimulates fibronectin expression through EP1 receptor, phospholipase C, protein kinase Calpha, and c-Src pathway in primary cultured rat osteoblasts. J Biol Chem 280(24):22907–22916

    Article  CAS  PubMed  Google Scholar 

  • Tsuboi S (2007) J Immunol 178:2987–2995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuosto L, Capuano C, Muscolini M, Santoni A, Galandrini R (2015) The multifaceted role of PIP2 in leukocyte biology. Cell Mol Life Sci 72(23):4461–4474

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Liu H, Jiang G, Wang H, Wang X, Wang H, Fang R, Cai S, Du J (2015) Changes in the proteomic profile during the differential polarization status of the human monocyte-derived macrophage THP-1 cell line. Proteomics 15(4):773–786

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Liao H, Ao M, Wu L, Zhang X, Chen Y (2014) Fixation-induced cell blebbing on spread cells inversely correlates with phosphatidylinositol 4,5-bisphosphatelevel in the plasma membrane. FEBS Open Biol 4:190–199

    Article  CAS  Google Scholar 

  • Zhou Y, Wing MR, Sondek J, Harden TK (2005) Molecular cloning and characterization of PLC-eta2. Biochem J 1;391(Pt 3):667–76

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenza Rita Lo Vasco.

Additional information

Tania Di Raimo and Martina Leopizzi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Raimo, T., Leopizzi, M., Mangino, G. et al. Different expression and subcellular localization of Phosphoinositide-specific Phospholipase C enzymes in differently polarized macrophages. J. Cell Commun. Signal. 10, 283–293 (2016). https://doi.org/10.1007/s12079-016-0335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-016-0335-9

Keywords

Navigation