Skip to main content
Log in

Cellular senescence and autophagy of myoepithelial cells are involved in the progression of in situ areas of carcinoma ex-pleomorphic adenoma to invasive carcinoma. An in vitro model

  • RESEARCH ARTICLE
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

During tumor invasion, benign myoepithelial cells of carcinoma ex-pleomorphic adenoma (CXPA) surround malignant epithelial cells and disappear. The mechanisms involved in the death and disappearance of these myoepithelial cells were investigated via analysis of the expression of regulatory proteins for apoptosis, autophagy and cellular senescence in an in situ in vitro model. Protein expression relating to apoptosis (Bax, Bcl-2, Survivin), autophagy (Beclin-1, LC3B) and cellular senescence (p21, p16) was evaluated using indirect immunofluorescence. β-galactosidase expression was assessed via histochemistry. Biopsies of CXPA (ex vivo) allowed immunhistochemical evaluation of p21 and p16, whilst LC3B, p21 and p16 protein expression was analyzed by western blotting. In the in vitro model, the myoepithelial cells were positive for LC3B (cytoplasm) and p21 (nucleus), whilst in vivo positivity for p21 and p16 was observed. In vitro, β-galactosidase activity increased in the myoepithelial cells over time. Western blotting analysis revealed an increased LC3B, p16 and p21 expression in the myoepithelial cells with previous contact with the malignant cells when compared with those without contact. The investigation of behavior of benign myoepithelial cells in ductal areas of CXAP revealed that the myoepithelial cells are involved in the autophagy-senescence phenotype that subsequently leads to their disappearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AE1/AE3:

Pan cytokeratin

Bad:

Bcl-2 antagonist of cell death

Bak:

Bcl-2 antagonistic killer

Bax:

Bcl-2 associated X protein

Bcl-2:

B cell lymphoma-2 protein

Bcl-xl:

B cell lymphoma-extra long

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

CDK:

Cyclin dependent kinase

cIAP:

Baculoviral IAP repeat containing

CK7:

Cytokeratin 7

CXAP:

Carcinoma ex-pleomorphic adenoma

DAPI:

4′-6-diamidino-2phenylindole

DMEM:

Dulbecco’s modified Eagle medium

DCIS:

Ductal carcinoma in situ

EDTA:

Ethylenediaminetetraacetic acid

IAP:

Apoptosis inhibitors proteins

LC3:

Microtubule-associated protein 1 light chain 3

Mcl-1:

Myeloid cell leucemia 1 protein

NAIP:

NLR family, apoptosis inhibitory proteins

PA:

Pleomorphic adenoma

PBS:

Phosphate buffer saline

RIPA:

Radio immuno precipitation assay buffer

TBST:

Tris-buffered saline and tween 20

XIAP:

X-linked inhibitor of apoptosis protein

References

  • Altemani A, Martins MT, Freitas L, Soares F, Araújo NS, Araújo VC (2005) Carcinoma ex pleomorphic adenoma (CXAP): immunoprofile of the cells involved in carcinomatous progression. Histophatology 46:635–641

    Article  CAS  Google Scholar 

  • Araújo VC, Altemani A, Furuse C, Martins MT, Araújo NS (2006) Immunoprofile of reatctive salivary myoepithelial cells in intraductal áreas of carcinoma ex-pleomorphic adenoma. Oral Oncol 42:1011–1116

    Article  PubMed  Google Scholar 

  • Barsky SH, Karlin NJ (2005) Myoepithelial cells: autocrine and paracrine suppressors of breast cancer progression. J Mammary Gland Biol Neoplasia 10:249–260

    Article  PubMed  Google Scholar 

  • Bartlett JM, Nofech-Moses S, Rakovitch E (2014) Ductal carcinoma in situ of the breast: can biomarkers improve current management? Clin Chem 60:60–67

    Article  CAS  PubMed  Google Scholar 

  • Campisi J (2011) Cellular senescence: putting the paradoxes in perspective. Curr Opin Genet Dev 21:107–112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Campisi J, Fagagna FDA (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8:729–740

    Article  CAS  PubMed  Google Scholar 

  • Campisi J, Andersen JK, Kapahi P, Melov S (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin Cancer Biol 21:354–359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cao Y, Klionsky DJ (2007) Physiological functions of Atg6/Beclin-1: a unique autophagy-related protein. Cell Res 17:839–849

    Article  CAS  PubMed  Google Scholar 

  • Capparelli C, Chiavarina B, Whitaker-Menezes D, Pestell TG, Pestell RG, Hulit J et al (2012a) CDK inibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, wihout an increase in neo-angiogenesis. Cell Cycle 11:3599–3610

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capparelli C, Guido C, Whitaker-Menezes D, Bonuccelli G, Balliet R, Pestell TG et al (2012b) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11:2285–2302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Capparelli C, Whitaker-Menezes D, Guido C, Balliet R, Pestell TG, Howell A et al (2012c) CTGF drives autophagy, glycolysis and senescence in cancer-associated fibroblasts via HIF1 activation, metabolically promoting tumor growth. Cell Cycle 11:2272–2284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Goligorsky MS (2006) Premature senescence of endothelial cells: methusaleh’s dilemma. Am J Physiol Heart Circ Physiol 290:729–739

    Google Scholar 

  • Chen N, Karantza-Wadsworth V (2009) Role and regulation of autophagy in cancer. Biochim Biophys Acta 1793:1516–1523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen J, Xavier S, Moskowitz-Kassai E, Chen R, Lu CY, Sanduski K et al (2012) Cathepsin cleavage of sirtuin 1 in endothelial progenitor cells mediates stress-induced premature senescence. Am J Pathol 180:973–983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cheung CHA, Cheng LT, Chang KY, Chen HH, Chang JY (2011) Investigations of surviving: the past, present and future. Front Biosci 16:952–961

    Article  CAS  Google Scholar 

  • Cowell CF, Weigelt B, Sakr RA, Ng CK, Hicks J, King TA, Reis-Filho JS (2013) Progression from ductal carcinoma in situ to invasive breast cancer: revisited. Mol Oncol 7:859–869

    Article  PubMed  Google Scholar 

  • Dimri GP (2005) What has senescence got to do with cancer? Cancer Cell 7:505–512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dulic V (2013) Senescence regulation by mTOR. Methods Mol Biol 965:15–35

    Article  CAS  PubMed  Google Scholar 

  • Evan GI, Fagagna FDA (2009) Cellular senescence: hot or what? Curr Opin Genet Dev 19:25–31

    Article  CAS  PubMed  Google Scholar 

  • Jones JL, Shaw JA, Pringle JH, Walker RA (2003) Primary breast myoepithelial cells exert an invasion-supressor effect on breast cancer cells via paracrine down-regulation of MMP expression in fibroblasts and tumour cells. J Pathol 201:562–572

    Article  CAS  PubMed  Google Scholar 

  • Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5:726–733

    Article  CAS  PubMed  Google Scholar 

  • Larsson LG (2011) Oncogene and tumor suppressor gene-mediated suppression of cellular senescence. Semin Cancer Biol 21:367–376

    Article  CAS  PubMed  Google Scholar 

  • Levine B (2007) Autophagy and cancer. Cell Biol 446:745–747

    CAS  Google Scholar 

  • Martinez EF, Demasi AP, Miguita L, Altemani A, Araújo NS, Araújo VC (2010) FGF-2 is overexpressed in myoepithelial cells of carcinoma ex-pleomorphic adenoma in situ structures. Oncol Rep 24:155–160

    Article  CAS  PubMed  Google Scholar 

  • Martinez EF, Montaldi PT, Araújo NS, Altemani A, Araújo VC (2012) A proposal of an in vitro model which mimics in situ áreas of carcinoma. J Cell Comun Signal 6:107–109

    Article  Google Scholar 

  • Martinez EF, Napimoga MH, Montalli VA, de Araújo NS, de Araújo VC (2013) In vitro cytokine expression in in situ-like areas of malignant neoplasia. Arch Oral Biol 58:552–557

    Article  CAS  PubMed  Google Scholar 

  • Metwaly H, Maruyama S, Yamazaki M, Tsuneki M, Abé T, Jen KY et al (2012) Parenchymal-stromal switching for extracellular matrix production on invasion of oral squamous cell carcinoma. Hum Pathol 43:1973–1981

    Article  PubMed  Google Scholar 

  • Miguita L, Martinez EF, Araújo NS, Araújo VC (2010) FGF-2, TGFß-1, PDGF-A and respective receptors expression in pleomorphic adenoma myoepithelial cells: an in vivo and in vitro study. J Appl Oral Sci 18:83–91

    Article  CAS  PubMed  Google Scholar 

  • Miracco C, Meng GC, Franchi A, Luzi P, Cosci E, Mourmouras V et al (2010) Beclin-1 and LC3 autophagic gene expression. In cutaneous melanocytic lesions. Hum Pathol 41:503–512

    Article  CAS  PubMed  Google Scholar 

  • Narita M, Young AR, Narita M (2009) Autophagy facilitates oncogene-induced senescence. Autophagy 5:1046–1047

    Article  CAS  PubMed  Google Scholar 

  • Nguyen M, Lee MC, Wang JL, Tomlinson JS, Shao ZM, Alpaugh ML et al (2000) The human myoepithelial cells displays a multifaceted anti-angiogenic phenotype. Oncogene 19:3449–3459

    Article  CAS  PubMed  Google Scholar 

  • Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B et al (2012) Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif 45:487–498

    Article  CAS  PubMed  Google Scholar 

  • Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P (2008) Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 90:313–323

    Article  CAS  PubMed  Google Scholar 

  • Placzek WJ, Wei J, Kitada S, Zhai D, Reed JC, Pellecchia M (2010) A survey of the anti-apoptotic Bcl-2 subfamily expression in cancer types provides a platform to predict the efficacy of Bcl-2 antagonists in cancer therapy. Cell Death Dis 1:e40

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Plati J, Bucur O, Khosravi-Far R (2011) Apoptotic cell signaling in câncer progression and therapy. Integr Biol 3:279–296

    Article  CAS  Google Scholar 

  • Roberg K, Jonsson AC, Grénman R, Norberg-Spaak L (2007) Radiotherapy response in oral squamous carcinoma cell lines: evaluation of apoptotic proteins as prognostic factors. Head Neck 29:325–334

    Article  PubMed  Google Scholar 

  • Roy S, Debnath J (2010) Autophagy and tumorigenesis. Semin Immunopathol 32:383–396

    Article  PubMed Central  PubMed  Google Scholar 

  • Shao ZM, Nguyen M, Alpaugh ML, O’Connell JT, Barsky SH (1998) The human myoepithelial cell exerts antiproliferative effects on breast carcinoma cells characterized by p21 induction, G2/M arrest, and apoptosis. Exp Cell Res 241:394–403

    Article  CAS  PubMed  Google Scholar 

  • Shay JW, Roninson IB (2004) Hallmarks of senescence in carcinogenesis and cancer therapy. Oncogene 23:2919–2933

    Article  CAS  PubMed  Google Scholar 

  • Silva AD, Silva CAB, Montalli VA, Martinez EF, Araújo VC, Furuse C (2012) In vitro evaluation of the suppressor potential of conditioned medium from benign myoepithelial cells from pleomorphic adenoma in malignant cell invasion. J Oral Pathol Med 41:610–614

    Article  PubMed  Google Scholar 

  • Sternlicht MD, Barsky SH (1997) The myoepithelial defense: a host defense against câncer. Med Hypotheses 48:37–46

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht MD, Kedeshian P, Shao ZM, Safarians S, Barsky SH (1997) The human myoepithelial cells is a natural tumor suppressor. Clin Cancer Res 3:1949–1958

    CAS  PubMed  Google Scholar 

  • Townson JL, Naumov GN, Chambers AF (2003) The role of apoptosis in tumor progression and metastasis. Curr Mol Med 3:631–642

    Article  CAS  PubMed  Google Scholar 

  • Ulukaya E, Acilan C, Yilmaz Y (2011) Apoptosis: why and how does it occur in biology? Cell Biochem Funct 29:468–480

    Article  CAS  PubMed  Google Scholar 

  • Wong RSY (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87–100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Pollyanna Tombini Montaldi, Vanessa Araújo and Nadir Freitas for their excellent technical expertise and assistance. This work was supported by grants from FAPESP/Brazil (2011/21157-0) and CNPq (473939/2011-8).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera Cavalcanti de Araújo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.A.B., Martinez, E.F., Demasi, A.P.D. et al. Cellular senescence and autophagy of myoepithelial cells are involved in the progression of in situ areas of carcinoma ex-pleomorphic adenoma to invasive carcinoma. An in vitro model. J. Cell Commun. Signal. 9, 255–265 (2015). https://doi.org/10.1007/s12079-015-0291-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-015-0291-9

Keywords

Navigation