Skip to main content
Log in

Computational identification and characterization of novel microRNA in the mammary gland of dairy goat (Capra hircus)

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Many studies have indicated that microRNAs (miRNAs) influence the development of the mammary gland by posttranscriptionally affecting their target genes. The objective of this research was to identify novel miRNAs in the mammary gland of dairy goats with a bioinformatics approach that was based on expressed sequence tag (EST) and genome survey sequence (GSS) analyses. We applied all known major mammals, miRNAs to search against the goat EST and GSS databases for the first time to identify new miRNAs. We, then, validated these newly predicted miRNAs with stem–loop reverse transcription followed by a SYBR Green polymerase chain reaction assay. Finally, 29 mature miRNAs were identified and verified, and of these, 14 were grouped into 13 families based on seed sequence identity and 85 potential target genes of newly verified miRNAs were subsequently predicted, most of which seemed to encode the proteins participating in regulation of metabolism, signal transduction, growth and development. The predicting accuracy of the new miRNAs was 70.37%, which confirmed that the methods used in this study were efficient and reliable. Detailed analyses of the sequence characteristics of the novel miRNAs of the goat mammary gland were performed. In conclusion, these results provide a reference for further identification of miRNAs in animals without a complete genome and thus improve the understanding of miRNAs in the caprine mammary gland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allmer J. and Yousef M. 2012 Computational methods for ab initio detection of microRNAs. Front. Genet. 3, 209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anglicheau D., Muthukumar T. and Suthanthiran M. 2010 MicroRNAs, small RNAs with big effects. Transplantation 90, 105–112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barozai M. Y. 2012 The novel 172 sheep (Ovis aries) microRNAs and their targets. Mol. Biol. Rep. 39, 6259–6266.

    Article  CAS  PubMed  Google Scholar 

  • Barozai M. Y., Din M. and Baloch I. A. 2013 Structural and functional based identification of the bean (Phaseolus) microRNAs and their targets from expressed sequence tags. J. Struct. Funct. Genomics 14, 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Bartel D. P. 2004 MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.

    Article  CAS  PubMed  Google Scholar 

  • Berezikov E., Cuppen E. and Plasterk R. H. 2006 Approaches to microRNA discovery. Nat. Genet. 38, 2–7.

    Article  Google Scholar 

  • Bernhart S. H. 2011 RNA structure prediction. Methods Mol. Biol. 760, 307–323.

    Article  CAS  PubMed  Google Scholar 

  • Bhardwaj J., Mohammad H. and Yadav S. K. 2010 Computational identification of microRNAs and their targets from the expressed sequence tags of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) J. Struct. Funct. Genomics 4, 233–240.

    Article  Google Scholar 

  • Caiment F., Charlier C., Hadfield T., Cockett N., Georges M. and Baurain D. 2010 Assessing the effect of the CLPG mutation on the microRNA catalog of skeletal muscle using high-throughput sequencing. Genome Res. 20, 1651–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrington J. C. and Ambros V. 2003 Role of microRNAs in plant and animal development. Science 301, 336–338.

    Article  CAS  PubMed  Google Scholar 

  • Catalano D., Pignone D., Sonnante G. and Finetti-Sialer M. M. 2012 In-silico and in-vivo analyses of EST databases unveil conserved miRNAs from Carthamus tinctorius and Cynara cardunculus. BMC Bioinformatics 13, S12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C., Ridzon D. A., Broomer A. J., Zhou Z., Lee D. H., Nguyen J. T. et al. 2005 Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 33, e179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dehury B., Panda D., Sahu J., Sahu M., Sarma K., Barooah M. et al. 2013 In silico identification and characterization of conserved miRNAs and their target genes in sweet potato (Ipomoea batatas L.) expressed sequence tags (ESTs). Plant Signal Behav. 8, e26543.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dong Y., Xie M., Jiang Y., Xiao N., Du X., Zhang W. et al. 2013a Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat. Biotechnol. 31, 135–141.

    Article  CAS  PubMed  Google Scholar 

  • Dong F., Ji Z. B., Chen C. X., Wang G. Z. and Wang J. M. 2013b Target gene and function prediction of differentially expressed microRNAs in lactating mammary glands of dairy goats. Int. J. Genomics 2013, 917342.

    Article  PubMed  PubMed Central  Google Scholar 

  • Engels B. M. and Hutvagner G. 2006 Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25, 6163–6169.

    Article  CAS  PubMed  Google Scholar 

  • Fatima A. and Morris D. G. 2013 MicroRNAs in domestic livestock. Physiol Genomics 45, 685–696.

    Article  CAS  PubMed  Google Scholar 

  • Filipowicz W., Bhattacharyya S. N. and Sonenberg N. 2008 Mechanisms of post-transcriptional regulation by microRNAs, are the answers in sight? Nat. Rev. Genet. 9, 102–114.

    Article  CAS  PubMed  Google Scholar 

  • Foubert E., De Craene B. and Berx G. 2010 Key signalling nodes in mammary gland development and cancer. The Snail1-Twist1 conspiracy in malignant breast cancer progression. Breast Cancer Res. 12, 206.

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazier T. P. and Zhang B. 2011 Identification of plant microRNAs using expressed sequence tag analysis. Methods Mol. Biol. 678, 13–25.

    Article  CAS  PubMed  Google Scholar 

  • Friedman R. C., Farh K. K., Burge C. B. and Bartel D. P. 2009 Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gigli I. and Maizon D. O. 2013 MicroRNAs and the mammary gland: a new understanding of gene expression. Genet. Mol. Biol. 36, 465–474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomes C. P., Cho J. H., Hood L., Franco O. L., Pereira R. W. and Wang K. 2013 A review of computational tools in microRNA discovery. Front. Genet. 4, 81.

    Article  PubMed  PubMed Central  Google Scholar 

  • Griffiths-Jones S., Saini H. K., van Dongen S. and Enright A. J. 2008 miRBase, tools for microRNA genomics. Nucleic Acids Res. 36, 154–158.

    Article  Google Scholar 

  • Huang Y., Zou Q., Wang S. P., Tang S. M., Zhang G. Z. and Shen X. J. 2011 The discovery approaches and detection methods of microRNAs. Mol. Biol. Rep. 38, 4125–4135.

    Article  CAS  PubMed  Google Scholar 

  • Hwang H. W. and Mendell J. T. 2006 MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br. J. Cancer 94, 776–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jevsinek S. D., Godnic I., Zorc M., Horvat S., Dovc P., Kovac M. and Kunej T. 2013 Genome-wide in silico screening for microRNA genetic variability in livestock species. Anim Genet. 44, 669–677.

    Article  Google Scholar 

  • Ji Z., Wang G., Xie Z., Wang J., Zhang C., Dong F. and Chen C. 2012a Identification of novel and differentially expressed microRNAs of dairy goat mammary gland tissues using Solexa sequencing and bioinformatics. PLoS One 7, e49463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji Z., Wang G., Xie Z., Zhang C. and Wang J. 2012b Identification and characterization of microRNA in the dairy goat (Capra hircus) mammary gland by Solexa deep-sequencing technology. Mol. Biol. Rep. 39, 9361–9371.

    Article  CAS  PubMed  Google Scholar 

  • Jia Q., Lin K., Liang J., Yu L. and Li F. 2010 Discovering conserved insect microRNAs from expressed sequence tags. J. Insect. Physiol. 56, 1763–1789.

    Article  CAS  PubMed  Google Scholar 

  • Jiang P., Wu H., Wang W., Ma W., Sun X. and Lu Z. 2007 MiPred, classification of real and pseudo microRNA precursors using random forest prediction model with combined features. Nucleic Acids Res. 35, W339–W344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones-Rhoades M. W. 2012 Conservation and divergence in plant microRNAs. Plant Mol. Biol. 80, 3–16.

    Article  CAS  PubMed  Google Scholar 

  • Kozomara A. and Griffiths-Jones S. 2011 miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, 152–157.

    Article  Google Scholar 

  • Krüger J. and Rehmsmeier M. 2006 RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34, W451–W454.

    Article  PubMed  PubMed Central  Google Scholar 

  • Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H. et al. 2007 Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Lee R. C., Feinbaum R. L. and Ambros V. 1993 The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.

    Article  CAS  PubMed  Google Scholar 

  • Lewis B. P., Burge C. B. and Bartel D. P. 2005 Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20.

    Article  CAS  PubMed  Google Scholar 

  • Li L., Xu J., Yang D., Tan X. and Wang H. 2010 Computational approaches for microRNA studies, a review. Mamm. Genome 21, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Li Z., Liu H., Jin X., Lo L. and Liu J. 2012a Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics 13, 731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z., Lan X., Guo W., Sun J., Huang Y., Wang J., Huang T., Lei C., Fang X. and Chen H. 2012b Comparative transcriptome profiling of dairy goat microRNAs from dry period and peak lactation mammary gland tissues. PLoS One 7, e52388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ling Y. H., Ding J. P., Zhang X. D., Wang L. J., Zhang Y. H., Li Y. S., Zhang Z. J. and Zhang X. R. 2013 Characterization of microRNAs from goat (Capra hircus) by Solexa deep-sequencing technology. Genet. Mol. Res. 12, 1951–1961.

    Article  CAS  PubMed  Google Scholar 

  • Liu N., Okamura K., Tyler D. M., Phillips M. D., Chung W. J. and Lai E. C. 2008 The evolution and functional diversification of animal microRNA genes. Cell Res. 18, 985–996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H. C., Hicks J. A., Trakooljul N. and Zhao S. H. 2010 Current knowledge of microRNA characterization in agricultural animals. Anim. Genet. 41, 225–231.

    Article  CAS  PubMed  Google Scholar 

  • Liu Z., Xiao H., Li H., Zhao Y., Lai S., Yu X. et al. 2012 Identification of conserved and novel microRNAs in cashmere goat skin by deep sequencing. PLoS One 7, e50001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak K. J. and Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Lorenz R., Bernhart S. H., Höner Zu Siederdissen C., Tafer H., Flamm C., Stadler P. F. and Hofacker I. L. 2011 ViennaRNA Package 2.0 Algorithms. Mol. Biol. 6, 26.

    Google Scholar 

  • Mendes N. D., Freitas A. T. and Sagot M. F. 2009 Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res. 37, 2419–2433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monavar F. A., Mohammadi S., Frazier T. P., Abbasi A., Abedini R., Karimi Farsad L. et al. 2012 Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis. Gene 493, 253–259.

    Article  Google Scholar 

  • Muvva C., Tewari L., Aruna K., Ranjit P., Md Z. S., Md K. A. and Veeramachaneni H. 2012 In silico identification of miRNAs and their targets from the expressed sequence tags of Raphanus sativus. Bioinformation 8, 98–103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ng Kwang Loong S. and Mishra S. K. 2007 Unique folding of precursor microRNAs, quantitative evidence and implications for de novo identification. RNA 13, 170–187.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oulas A., Karathanasis N., Louloupi A., Iliopoulos I., Kalantidis K. and Poirazi P. 2012 A new microRNA target prediction tool identifies a novel interaction of a putative miRNA with CCND2. RNA Biol. 9, 1196–1207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panda D., Dehury B., Sahu J., Barooah M., Sen P. and Modi M. K. 2014 Computational identification and characterization of conserved miRNAs and their target genes in garlic (Allium sativum L.) expressed sequence tags. Gene 537, 333–342.

    Article  CAS  PubMed  Google Scholar 

  • Patanun O., Lertpanyasampatha M., Sojikul P., Viboonjun U. and Narangajavana J. 2013 Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.) Mol. Biotechnol. 53, 257–269.

    Article  CAS  PubMed  Google Scholar 

  • Peterson S. M., Thompson J. A., Ufkin M. L., Sathyanarayana P., Liaw L. and Congdon C. B. 2014 Common features of microRNA target prediction tools. Front. Genet. 5, 23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmittgen T. D. and Livak K. J. 2008 Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3, 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  • Silveri L., Tilly G., Vilotte J. L. and Le Provost F. 2006 MicroRNA involvement in mammary gland development and breast cancer. Reprod Nutr. 46, 549–556.

    Article  CAS  Google Scholar 

  • Takada S. and Asahara H. 2012 Current strategies for microRNA research. Mod. Rheumatol. 22, 645–653.

    Article  CAS  PubMed  Google Scholar 

  • VanGuilder H. D., Vrana K. E. and Freeman W. M. 2008 Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques 44, 619–626.

    Article  CAS  PubMed  Google Scholar 

  • Varkonyi-Gasic E. and Hellens R. P. 2011 Quantitative stem-loop RT-PCR for detection of microRNAs. Methods Mol. Biol. 744, 145–157.

    Article  CAS  PubMed  Google Scholar 

  • Vishwakarma N. P. and Jadeja V. J. 2013 Identification of miRNA encoded by Jatropha curcas from EST and GSS. Plant Signal Behav. 8, e23152.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X., Gu Z. and Jiang H. 2013 MicroRNAs in farm animals. Animal 3, 1–9.

    Article  Google Scholar 

  • Wright J. A., Richer J. K. and Goodall G. J. 2010 microRNAs and EMT in mammary cells and breast cancer. J. Mammary Gland Biol. Neoplasia 15, 213–223.

    Article  PubMed  Google Scholar 

  • Wu J., Zhu H., Song W., Li M., Liu C., Li N. et al. 2014 Identification of conservative microRNAs in Saanen dairy goat testis through deep sequencing. Reprod. Domest. Anim. 49, 32–40.

    Article  CAS  PubMed  Google Scholar 

  • Yu Z. and Pestell R. G. 2012 Small non-coding RNAs govern mammary gland tumorigenesis. J. Mammary Gland Biol. Neoplasia 17, 59–64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan C., Wang X., Geng R., He X., Qu L. and Chen Y. 2013 Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing. BMC Genomics 14, 511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeder M. A. and Hesse B. 2000 The initial domestication of goats (Capra hircus) in the Zagros mountains 10,000 years ago. Science 287, 2254–2257.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B. H., Pan X. P., Cox S. B., Cobb G. P. and Anderson T. A. 2006a Computational identification of microRNAs and their targets. Comput. Biol. Chem. 6, 395–407.

    Article  Google Scholar 

  • Zhang B. H., Pan X. P., Cox S. B., Cobb G. P. and Anderson T. A. 2006b Evidence that miRNAs are different from other RNAs. Cell Mol. Life Sci. 63, 246–254.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B. H., Pan X. P. and Anderson T. A. 2006c Identification of 188 conserved maize microRNAs and their targets. FEBS Lett. 15, 3753–3762.

    Article  Google Scholar 

  • Zhang L., Chia J. M., Kumari S., Stein J. C., Liu Z., Narechania A. et al. 2009 A genome-wide characterization of microRNA genes in maize. PLoS Genet. 5, e1000716.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou B. and Liu H. L. 2010 Computational identification of new porcine microRNAs and their targets. Anim. Sci. J. 81, 290–296.

    Article  CAS  PubMed  Google Scholar 

  • Zhou M., Wang Q., Sun J., Li X., Xu L., Yang H. et al. 2009 In silico detection and characteristics of novel microRNA genes in the Equus caballus. Genomics 94, 125–131.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (grant nos. 31100959 and 31401093) and China Postdoctoral Science Foundation (grant no. 2011M500633).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LI ZHANG.

Additional information

Qu B., Qiu Y., Zhen Z., Zhao F., Wang C., Cui Y., Li Q. and Zhang L. 2016 Computational identification and characterization of novel microRNA in the mammary gland of dairy goat (Capra hircus). J. Genet. 95, xx–xx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

QU, B., QIU, Y., ZHEN, Z. et al. Computational identification and characterization of novel microRNA in the mammary gland of dairy goat (Capra hircus). J Genet 95, 625–637 (2016). https://doi.org/10.1007/s12041-016-0674-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0674-6

Keywords

Navigation