Skip to main content
Log in

Computational identification of microRNAs and their targets from the expressed sequence tags of horsegram (Macrotyloma uniflorum (Lam.) Verdc.)

  • Published:
Journal of Structural and Functional Genomics

Abstract

MicroRNAs (miRNAs) are a class of naturally occurring and small non-coding RNA molecules of about 21–25 nucleotides in length. Their main function is to downregulate gene expression in different manners like translational repression, mRNA cleavage and epigenetic modification. To predict new miRNAs in plants different computational approaches have been developed. In the present study, an EST based approach has been used to identify novel miRNAs in horsegram. Identification of miRNAs was initiated by mining the EST database available at NCBI. Total of 989 ESTs were obtained for the identification of miRNAs. These ESTs were subjected to CAP3 assembly to remove the redundancy. This resulted in an output of 72 contigs and 606 singletons as non redundant datasets. The miRNAs were then predicted by using miRNA-finder. A total of eight potential miRNAs were predicted and named as hor-miR1 to hor-miR8. None of identified miRNAs showed significant homology with the previously reported in plants and therefore should be considered novel. These miRNAs were inputted to miRU2 program to predict their targets. The target mRNAs for these miRNAs mainly belong to zinc finger, chromosome condensation, protein kinase, abscisic acid-responsive, calcineurin-like phosphoesterase, disease resistance and transcriptional factor family proteins. These targets appeared to be involved in plant growth and development and environmental stress responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  3. He L, Hannon GJ (2004) Nat Rev Genet 5:522–531

    Article  CAS  PubMed  Google Scholar 

  4. Brodersen P, Voinnet O (2006) Trend Genet 22:268–280

    Article  CAS  Google Scholar 

  5. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) Genes Dev 16:1616–1626

    Article  CAS  PubMed  Google Scholar 

  6. Zuker M (2003) Nucleic Acid Res 31:3406–3415

    Article  CAS  PubMed  Google Scholar 

  7. Bonnet E, Wuyts J, Rouze P, Van de Peer Y (2004) Bioinformatics 20:2911–2917

    Article  CAS  PubMed  Google Scholar 

  8. Chapman EJ, Carrington JC (2007) Nat Rev Genet 8:884–896

    Article  CAS  PubMed  Google Scholar 

  9. Sanan-Mishra N, Mukherjee SK (2007) Open Plant Sci J 1:1–9

    Google Scholar 

  10. Jin H (2008) FEBS Lett 582:2679–2684

    Article  CAS  PubMed  Google Scholar 

  11. Zhu JK (2008) Proc Natl Acad Sci USA 105:9851–9852

    Article  CAS  PubMed  Google Scholar 

  12. Yin Z, Li C, Han X, Shen F (2008) Gene 414:60–66

    Article  CAS  PubMed  Google Scholar 

  13. Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Trends Plant Sci 12:301–309

    Article  CAS  PubMed  Google Scholar 

  14. Mallory AC, Vaucheret H (2006) Nat Genet 38:S31–S36

    Article  CAS  PubMed  Google Scholar 

  15. Fahlgren N, Howell MD, Kasschau KD, Chapman EJ, Sullivan CM, Cumbie JS, Givan SA, Law TF, Grant SR, Dangl JL, Carrington JC (2007) PLoS One 2:e219

    Article  PubMed  Google Scholar 

  16. Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Plant Cell 18:412–421

    Article  CAS  PubMed  Google Scholar 

  17. Jones-Rhoades MW, Bartel DP, Bartel B (2006) Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  18. Sunkar R, Kapoor A, Zhu JK (2006) Plant Cell 18:2051–2065

    Article  CAS  PubMed  Google Scholar 

  19. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) Curr Biol 15:2038–2043

    Article  CAS  PubMed  Google Scholar 

  20. Lu S, Sun YH, Shi R, Clark C, Li L, Chiang WL (2005) Plant Cell 17:2186–2203

    Article  CAS  PubMed  Google Scholar 

  21. Jones-Rhoades MW, Bartel DP (2004) Mol Cell 14:787–799

    Article  CAS  PubMed  Google Scholar 

  22. Jeswani LM, Baldev B (1990) Advances in pulse production technology publication and information division. Indian Council of Agricultural Research, New Delhi

    Google Scholar 

  23. Yadava ND, Vyas NL (1994) Arid legumes. Agro publishers, India

    Google Scholar 

  24. Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Gen Biol 5:R65

    Article  Google Scholar 

  25. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Science 297:2053–2056

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Y (2005) Nucleic Acid Res 33:W701–W704

    Article  CAS  PubMed  Google Scholar 

  27. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) RNA 9:277–279

    Article  CAS  PubMed  Google Scholar 

  28. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  29. Zhang B, Pan X, Cobb GP, Anderson TA (2006) Dev Biol 289:3–16

    Article  CAS  PubMed  Google Scholar 

  30. Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Biochem Biophys Res Commun 354:585–590

    Article  CAS  PubMed  Google Scholar 

  31. Ambros V, Lee RC, Lavanway A, Williams PT, Jewell D (2003) Curr Biol 13:807–818

    Article  CAS  PubMed  Google Scholar 

  32. Zhang B, Pan X, Anderson TA (2006) FEBS Lett 580:3753–3762

    Article  CAS  PubMed  Google Scholar 

  33. Zheng Y, Hsu W, Lee M-Li, Wong L (2006) VDMB 4316:131–145

    Google Scholar 

  34. Shi Y, Berg JM (1996) Biochemistry 35:3845–3848

    Article  CAS  PubMed  Google Scholar 

  35. Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Plant Physiol 137:13–30

    Article  CAS  PubMed  Google Scholar 

  36. Ciechanover A (1998) EMBO J 17:7151–7160

    Article  CAS  PubMed  Google Scholar 

  37. Francis NJ, Kingston RE, Woodcock CL (2004) Science 306:1574–1577

    Article  CAS  PubMed  Google Scholar 

  38. Lorkovic ZJ, Barta A (2002) Nucleic Acids Res 30:623–635

    Article  CAS  PubMed  Google Scholar 

  39. Romanel EA, Schrago CG, Counago RM, Russo CA, Alves-Ferreira M (2009) PLoS One 4:e5791

    Article  PubMed  Google Scholar 

  40. Stefano G, Renna L, Chatre L, Hanton SL, Moreau P, Hawes C, Brandizzi F (2006) Plant J 46:95–110

    Article  CAS  PubMed  Google Scholar 

  41. Deyholos MK, Cavaness GF, Hall B, King E, Punwani J, Van Norman J, Sieburth LE (2003) Development 130:6577–6588

    Article  CAS  PubMed  Google Scholar 

  42. Zhong R, Ye ZH (2004) Plant Cell Physiol 45:1720–1728

    Article  CAS  PubMed  Google Scholar 

  43. Theissen G, Kim JT, Saedler H (1996) J Mol Evol 43:484–516

    Article  CAS  PubMed  Google Scholar 

  44. Boggs NA, Nasrallah JB, Nasrallah ME (2009) PLoS Genet 5:e1000426

    Article  PubMed  Google Scholar 

  45. Scotti PA, Urbanus ML, Brunner J, de Gier JW, von Heijne G, van der Does C, Driessen AJ, Oudega B, Luirink J (2000) EMBO J 19:542–549

    Article  CAS  PubMed  Google Scholar 

  46. Kobe B, Deisenhofer J (2002) Nature 374:183–1866

    Article  Google Scholar 

  47. Ellis J, Lawrence G, Ayliffe M, Anderson P, Collins N, Finnegan J, Frost D, Luck J, Pryor T (1997) Annu Rev Phytopathol 35:271–291

    Article  CAS  PubMed  Google Scholar 

  48. Johnson KL, Jones BJ, Bacic A, Schultz CJ (2003) Plant Physiol 133:1911–1925

    Article  CAS  PubMed  Google Scholar 

  49. Kalde M, Nuhse TS, Findlay K, Peck SC (2007) Proc Natl Acad Sci USA 104:11850–11855

    Article  CAS  PubMed  Google Scholar 

  50. Shah J (2005) Annu Rev Phytopathol 43:229–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors are thankful to Dr. P. S. Ahuja, Director, IHBT for his valuable suggestions and guidance to conduct this work. We would like to thank the financial support from Council of Scientific and Industrial Research (CSIR) and Department of Science and Technology (DST), Govt of India. HM is thankful to CSIR for providing research fellowship in the form of JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh Kumar Yadav.

Additional information

Jyoti Bhardwaj and Hasan Mohammad contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhardwaj, J., Mohammad, H. & Yadav, S.K. Computational identification of microRNAs and their targets from the expressed sequence tags of horsegram (Macrotyloma uniflorum (Lam.) Verdc.). J Struct Funct Genomics 11, 233–240 (2010). https://doi.org/10.1007/s10969-010-9098-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-010-9098-3

Keywords

Navigation