Skip to main content
Log in

Population structure and association mapping studies for important agronomic traits in soybean

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The present study was carried out with a set of 96 diverse soybean genotypes with the objectives of analysing the population structure and to identify molecular markers associated with important agronomic traits. Large phenotypic variability was observed for the agronomic traits under study indicating suitability of the genotypes for association studies. The maximum values for plant height, pods per plant, seeds per pod, 100-seed weight and seed yield per plant were approximately two and half to three times more than the minimum values for the genotypes. Seed yield per plant was found to be significantly correlated with pods per plant (r = 0.77), 100-seed weight (r = 0.35) and days to maturity (r = 0.23). The population structure studies depicted the presence of seven subpopulations which nearly corresponded with the source of geographical origin of the genotypes. Linkage disequilibrium (LD) between the linked markers decreased with the increased distance, and a substantial drop in LD decay values was observed between 30 and 35 cM. Genomewide marker-traits association analysis carried out using general linear (GLM) and mixed linear models (MLM) identified six genomic regions (two of them were common in both) on chromosomes 6, 7, 8, 13, 15 and 17, which were found to be significantly associated with various important traits viz., plant height, pods per plant, 100-seed weight, plant growth habit, average number of seeds per pod, days to 50% flowering and days to maturity. The phenotypic variation explained by these loci ranged from 6.09 to 13.18% and 4.25 to 9.01% in the GLM and MLM studies, respectively. In conclusion, association mapping (AM) in soybean could be a viable alternative to conventional QTL mapping approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Agrama H. A. and Eizenga G. C. 2008 Molecular diversity and genome-wide linkage disequilibrium patterns in a worldwide collection of Oryza sativa and its wild relatives. Euphytica 160, 339–355.

    Article  CAS  Google Scholar 

  • Agrama H. A., Eizenga G. C. and Yan W. 2007 Association mapping of yield and its components in rice. Mol. Breed. 19, 341–356.

  • Bradbury P. J., Zhang Z., Kroon D. E., Casstevens T. M., Ramdoss Y. and Buckler E. S. 2007 TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635.

  • Cardon R. L. and Bell J. I. 2001 Association study designs for complex disease. Nat. Rev. Genet. 2, 91–99.

  • Charlson D. V., Cianzio S. R. and Shoemaker R. C. 2003 Associating SSR markers with soybean resistance to iron deficiency chlorosis. J. Plant Nutr. 26, 2267–2276.

  • Charlson D. V., Bailey T. B., Cianzio S. R. and Shoemaker R. C. 2005 Molecular marker Satt481 is associated with iron-deficiency chlorosis resistance in a soybean breeding population. Crop Sci. 45, 2394–2399.

  • Chung J., Babka H. L., Graef G. L., Staswick P. E., Lee D. J., Cregan P. B. et al. 2003 The seed protein, oil, and yield QTL on soybean linkage group I. Crop Sci. 43, 1053–1067.

  • Cober E. R. and Voldeng H. D. 1999 Developing high-protein, high-yield soybean populations and lines. Crop Sci. 40, 39–42.

  • Cregan P. B., Jarvik T., Bush A. L., Shoemaker R. C., Lark K. G., Kahler A. L. et al. 1999 An integrated genetic linkage map of the soybean genome. Crop Sci. 39, 1464–1490.

  • Doerge R. W. 2002 Mapping and analysis of quantitative trait loci in experimental populations. Nat. Rev. Genet. 3, 43–52.

  • Elmore R.W., Roeth F.W., Nelson L.A., Shapiro C.A., Klein R. N., Knezevic S. Z. and Martin A. 2001 Glyphosate-resistant soybean cultivar yields compared with sister lines. Agronomy J. 93, 408–412.

  • Falush D., Stephens M. and Pritchard J. K. 2003 Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 164, 1567– 1587.

  • Farnir F., Coppieters W., Arranz J. J, Berzi P., Cambisano N., Grisart B. et al. 2000 Extensive genome wide linkage disequilibrium in cattle. Genome Res. 10, 220–227.

  • Felsenstein J. 2005. PHYLIP (phylogeny inference package) version 3.6, distributed by author. Department of Genome Sciences, University of Washington, Seattle, USA.

  • Garris A. J., McCouch S. R. and Kresovich S. 2003 Population structure and its effects on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice Oryza sativa L. Genetics 165, 759–769.

  • Gouis J. L., Bordes J., Ravel C., Heumez E., Faure S., Praud S. et al. 2012 Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor. Appl. Genet. 124, 597–611.

  • Govindarao C. N. 2010. Characterization of soybean [Glycine max (L.) Merr.] varieties through morphological, chemical molecular markers and image analyzer (pp. 50–55). M.Sc. thesis. University of Agricultural Sciences, Dharwad, India.

  • Hamblin M. T., Mitchell S. E., White G. M., Gallego J., Kukatla R. and Wing R. A. 2004 Comparative population genetics of the panicoid grasses: sequence polymorphism, linkage disequilibrium and selection in a diverse sample of Sorghum bicolor. Genetics 167, 471–483.

  • Hill W. G. and Robertson A. 1968 Linkage disequilibrium in finite populations. Theor. Appl. Genet. 38, 226–231.

  • Holland J. B. 2007 Genetic architecture of complex traits in plants. Curr. Opin. Plant. Biol. 10, 156–161.

  • Hu Z., Zhang H., Kan G., Ma D., Zhang D., Shi G. et al. 2013 Determination of the genetic architecture of seed size and shape via linkage and association analysis in soybean (Glycine max L. Merr.) Genetica 141, 247–254.

  • Jun T. H., Van K., Kim M. Y., Lee S. H. and Walker D. R. 2008 Association analysis using SSR markers to find QTL for seed protein content in soybean. Euphytica 162, 179–191.

  • Kraakman A. T. W., Niks R. E., Van den Berg P. M. M. M., Stam P. and Van Eeuwijk F. A. 2004 Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168, 435–446.

  • Kraft T. M., Hansen M. and Nilsson N. O. 2000 Linkage disequilibrium and fingerprinting in sugar beet. Theor. Appl. Genet. 101, 323–326.

  • Kruger S. A., Able J. A., Chalmers K. J. and Langridge P. 2004. Linkage disequilibrium analysis of hexaploid wheat. In Plant and animal genomes XII conference (10–14 January). San Diego, CA, USA, P321.

  • Kumar B., Talukdar A., Verma A., Girmilla V., Bala I., Lal S. K. et al. 2014 Screening of soybean [Glycine max (L.) Merr.] genotypes for yellow mosaic virus (YMV) disease resistance and their molecular characterization using RGA and SSRs markers. AJCS 8, 27–34.

  • Maccaferri M., Sanguineti M. C., Noli E. and Tuberosa R. 2005 Population structure and long-range linkage disequilibrium in a drum wheat elite collection. Mol. Breed. 15, 271–289.

  • Malysheva-Otto L. V., Ganal M. W. and Roder M. S. 2006 Analysis of molecular diversity, population structure and linkage disequilibrium in a worldwide survey of cultivated barley germplasm (Hordeum vulgare L.) BMC Genet. 7, 6.

  • Maskri Y. A., Sajjad M. and Khan S. H. 2012 Association mapping: A step forward to discovering new alleles for crop improvement. Int. J. Agr. Biol. 14, 153–160.

  • Mather D. E., Hayes P. M., Chalmers K., Eglinton J., Matus I., Richardson K. et al. 2004. Use of SSR marker data to study linkage disequilibrium and population structure in Hordeum vulgare: Prospects for association mapping in barley. In Linkage disequilibrium workshop, april 4–7, Novotel Barossa Valley Resort, South Australia.

  • Neumann K., Kobiljski B., Dencic S., Varshney R. K. and Borner A. 2011 Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.) Mol Breed. 27, 37–58.

  • Nordborg M. and Tavare S. 2002 Linkage disequilibrium: What history has to tell us? Trends Genet. 18, 83–90.

  • Palaisa K., Morgante M., Williams M. and Rafalski A. 2004 Long range patterns of diversity and linkage disequilibrium surrounding the maize Y1 gene are indicative of an asymmetric selective sweep. Proc. Natl. Acad. Sci. USA 101, 9885– 9890.

  • Price A. H. 2006 Believe it or not, QTLs are accurate! Trends Plant Sci. 11, 213–216.

  • Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multi-locus genotype data. Genetics 155, 945–959.

  • Remington D. L., Thornsberry J. M., Matsuoka Y., Wilson L. M., Whitt S. R., Doebley J. et al. 2001 Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc. Natl. Acad. Sci. USA 98, 11479–11484.

  • Saghai-Maroof M. A., Soliman K. M., Jorgensen R. A. and Allard R. W. 1984 Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81, 8014– 8018.

  • Senior M. L. and Henn M. 1993 Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36, 884.

  • Singh R. K., Bhat K. V., Bhatia V. S., Mohapatra T. and Singh N. K. 2008 Association mapping for photoperiod insensitivity trait in soybean. Natl. Acad. Sci. Lett. 31, 281–283.

  • Smith J. R. and Nelson R. L. 1986 Relationship between seed-filling period and yield among soybean breeding lines. Crop Sci. 26, 469–472.

  • Stich B., Mohring J., Piepho H. P., Heckenberger M., Buckler E. S. and Melchinger A. E. 2008 Comparison of mixed-model approaches for association mapping. Genetics 178, 1745–1754.

  • Sun G., Zhu C., Kramer M. H., Yang S. S., Song W., Piepho H. P. et al. 2010 Variation explained in mixed model association mapping. Heredity 105, 333–340.

  • Szalma S. J., Buckler I. V. E. S., Snook M. E. and McMullen M. D. 2005 Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor. Appl. Genet. 110, 1324–1333.

  • Tenaillon M. I., Sawkins M. C., Long A. D., Gaut R. L., Doebley J. F. and Gaut B. S. 2001 Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays L.) Proc. Natl. Acad. Sci. USA 98, 9161–9166.

  • Thornsberry J. M., Goodman M. M., Doebley J., Kresovich S., Nielsen D. and Buckler E. S. I. V. 2001 Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet. 28, 286–289.

  • Wang J., McClean P. E., Lee R., Goos R. J. and Helms T. 2008 Association mapping of iron deficiency chlorosis loci in soybean (Glycine max L. Merr.) advanced breeding lines. Theor. Appl. Genet. 116, 777–787.

  • Yu J., Pressoir G., Briggs W. H., Bi I. V., Yamasaki M., Doebley J. F. et al. 2006 A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38, 203–208.

  • Zhang P., Li J., Li X., Liu X., Zhao X. and Lu Y. 2011 Population structure and genetic diversity in a rice core collection (Oryza sativa L.) investigated with SSR markers. PLoS One 6, e27565.

  • Zhang W. J., Niu Y., Bu S. H., Li M., Feng J. Y., Zhang J. et al. 2014 Epistatic association mapping for alkaline and salinity tolerance traits in the soybean germination stage. PLoS One 9, e84750.

  • Zhao K., Tung C.W., Eizenga G. C.,Wright M. H., Ali M. L., Price A. H. et al. 2011 Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa. Nat. Commun. 2, 1–10.

  • Zhu C., Gore M., Buckler E. S. and Yu J. 2008 Status and prospects of association mapping in plants. Plant Genome 1, 5–20.

Download references

Acknowledgement

First author sincerely acknowledges PG School, IARI, for providing the fellowship during post-graduate study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AKSHAY TALUKDAR.

Additional information

[Kumar B., Talukdar A., Bala I., Verma K., Lal S. K., Sapra R. L., Namita B., Chander S. and Tiwari R. 2014 Population structure and association mapping studies for important agronomic traits in soybean. J. Genet. 93, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KUMAR, B., TALUKDAR, A., BALA, I. et al. Population structure and association mapping studies for important agronomic traits in soybean. J Genet 93, 775–784 (2014). https://doi.org/10.1007/s12041-014-0454-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0454-0

Keywords

Navigation