Skip to main content
Log in

Identification and characterization of the RCI2 gene family in maize (Zea mays)

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Rare-cold-inducible (RCI2) genes are structurally conserved members that encode small, highly hydrophobic proteins involved in response to various abiotic stresses. Phylogenetic and functional analyses of these genes have been conducted in Arabidopsis, but an extensive investigation of the RCI2 gene family has not yet been carried out in maize. In the present study, 10 RCI2 genes were identified in a fully sequenced maize genome. Structural characterization and expression pattern analysis of 10 ZmRCI2s (Zea mays RCI2 genes) were subsequently determined. Sequence and phylogenetic analyses indicated that ZmRCI2s are highly conserved, and most of them could be grouped with their orthologues from other organisms. Chromosomal location analysis indicated that ZmRCI2s were distributed unevenly on seven chromosomes with two segmental duplication events, suggesting that maize RCI2 gene family is an evolutionarily conserved family. Putative stress-responsive cis-elements were detected in the 2-kb promoter regions of the 10 ZmRCI2s. In addition, the 10 ZmRCI2s showed different expression patterns in maize development based on transcriptome analysis. Further, microarray and quantitative real-time PCR (qRT-PCR) analysis showed that each maize RCI2 genes were responsive to drought stress, suggesting their important roles in drought stress response. The results of this work provide a basis for future cloning and application studies of maize RCI2 genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bailey T. L. and Elkan C. 1995 The value of prior knowledge in discovering motifs with MEME. Proc. Int. Conf. Intell. Syst. Mol. Biol. 3, 21–29.

    CAS  PubMed  Google Scholar 

  • Bray E. A. 1997 Plant responses to water deficit. Trends Plant Sci. 2, 48–54.

    Article  Google Scholar 

  • Cannon S. B., Mitra A., Baumgarten A., Young N. D. and May G. 2004 The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol. 4, 10.

    Article  PubMed Central  PubMed  Google Scholar 

  • Capel J., Jarillo J. A., Salinas J. and Martinez-Zapater J. M. 1997 Two homologous low-temperature-inducible genes from Arabidopsis encode highly hydrophobic proteins. Plant Physiol. 115, 569–576.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chang-Qing Z., Shunsaku N., Shenkui L. and Tetsuo T. 2008 Characterization of two plasma membrane protein 3 genes (PutPMP3) from the alkali grass, Puccinellia tenuiflora, and functional comparison of the rice homologues, OsLti6a/b from rice. BMB Rep. 41, 448–454.

    Article  PubMed  Google Scholar 

  • Finn R. D., Mistry J., Schuster-Bockler B., Griffiths-Jones S., Hollich V., Lassmann T. et al. 2006 Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247–251.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fu J., Zhang D. F., Liu Y. H., Ying S., Shi Y. S., Song Y. C. et al. 2012 Isolation and characterization of maize PMP3 genes involved in salt stress tolerance. PLoS One 7, e31101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galvez A. F., Gulick P. J. and Dvorak J. 1993 Characterization of the early stages of genetic salt-stress responses in salt-tolerant Lophopyrum elongatum, salt-sensitive wheat, and their amphiploid. Plant Physiol. 103, 257–265.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gimeno J., Gadea J., Forment J., Perez-Valle J., Santiago J., Martinez-Godoy M. A. et al. 2009 Shared and novel molecular responses of mandarin to drought. Plant Mol. Biol. 70, 403– 420.

    Article  CAS  PubMed  Google Scholar 

  • Goddard N. J., Dunn M. A., Zhang L., White A. J., Jack P. L. and Hughes M. A. 1993 Molecular analysis and spatial expression pattern of a low-temperature-specific barley gene, blt101. Plant Mol. Biol. 23, 871–879.

    Article  CAS  PubMed  Google Scholar 

  • Gulick P. J., Shen W. and An H. 1994 ESI3, a stress-induced gene from Lophopyrum elongatum. Plant Physiol. 104, 799–800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo A. Y., Zhu Q. H., Chen X. and Luo J. C. 2007 GSDS: a gene structure display server. Yi Chuan 29, 1023–1026.

    Article  CAS  PubMed  Google Scholar 

  • Higo K., Ugawa Y., Iwamoto M. and Higo H. 1998 PLACE: a database of plant cis-acting regulatory DNA elements. Nucleic Acids Res. 26, 358–359.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Imai R., Koike M., Sutoh K., Kawakami A., Torada A. and Oono K. 2005 Molecular characterization of a cold-induced plasma membrane protein gene from wheat. Mol. Genet. Genomics 274, 445–453.

    Article  CAS  PubMed  Google Scholar 

  • Inada M., Ueda A., Shi W. and Takabe T. 2005 A stress-inducible plasma membrane protein 3 (AcPMP3) in a monocotyledonous halophyte, Aneurolepidium chinense, regulates cellular Na(+) and K(+) accumulation under salt stress. Planta 220, 395–402.

    Article  CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen K. R., Gilmour S. J., Zarka D. G., Schabenberger O. and Thomashow M. F. 1998 Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104–106.

    Article  CAS  PubMed  Google Scholar 

  • Jiang C., Gu X. and Peterson T. 2004 Identification of conserved gene structures and carboxy-terminal motifs in the Myb gene family of Arabidopsis and Oryza sativa L. ssp. indica. Genome Biol. 5, R46.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kroemer K., Reski R. and Frank W. 2004 Abiotic stress response in the moss Physcomitrella patens: evidence for an evolutionary alteration in signaling pathways in land plants. Plant Cell Rep. 22, 864–870.

    Article  CAS  PubMed  Google Scholar 

  • I., Doerks T. and Bork P. 2009 SMART 6: recent updates and new developments. Nucleic Acids Res. 37, 229–232.

  • Lin J., Zhang W., Zhou X. W., Wang X. L., Shi M. Z., Sun X. F. et al. 2007 Molecular cloning and characterization of cold-responsive gene Cbrci35 from Capsella bursa-pastoris. Biologia 62, 690–696.

    Article  CAS  Google Scholar 

  • Liu Q., Kasuga M., Sakuma Y., Abe H., Miura S., Yamaguchi-Shinozaki K. et al. 1998 Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391–1406.

  • Livak K. J. and Schmittgen T. D. 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Medina J., Catala R. and Salinas J. 2001 Developmental and stress regulation of RCI2A and RCI2B, two cold-inducible genes of Arabidopsis encoding highly conserved hydrophobic proteins. Plant Physiol. 125, 1655–1666.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Medina J., Ballesteros M. L. and Salinas J. 2007 Phylogenetic and functional analysis of Arabidopsis RCI2 genes. J. Exp. Bot. 58, 4333–4346.

    Article  CAS  PubMed  Google Scholar 

  • Mehan M. R., Freimer N. B. and Ophoff R. A. 2004 A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture. Hum. Genomics 1, 335.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyers B. C., Kozik A., Griego A., Kuang H. and Michelmore R.W. 2003 Genome-wide analysis of NBS–LRR-encoding genes in Arabidopsis. Plant Cell 15, 809–834.

  • Mitsuya S., Taniguchi M., Miyake H. and Takabe T. 2005 Disruption of RCI2A leads to over-accumulation of Na+ and increased salt sensitivity in Arabidopsis thaliana plants. Planta 222, 1001–1009.

  • M. R., Almutairi A. M., Gibbons J., Yun S. J. and de Los Reyes B. G 2005 The OsLti6 genes encoding low-molecularweight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 344, 171–180.

  • Narusaka Y., Nakashima K., Shinwari Z. K., Sakuma Y., Furihata T., Abe H. et al. 2003 Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J. 34, 137–148.

  • Navarre C. and Goffeau A. 2000 Membrane hyperpolarization and salt sensitivity induced by deletion of PMP3, a highly conserved small protein of yeast plasma membrane. EMBO J. 19, 2515–2524.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nylander M., Heino P., Helenius E., Palva E. T., Ronne H. and Welin B. V. 2001 The low-temperature- and salt-induced RCI2A gene of Arabidopsis complements the sodium sensitivity caused by a deletion of the homologous yeast gene SNA1. Plant Mol. Biol. 45, 341–352.

    Article  CAS  PubMed  Google Scholar 

  • Peng X., Zhao Y., Cao J., Zhang W., Jiang H., Li X. et al. 2012 CCCH-type zinc finger family in maize: genome-wide identification, classification and expression profiling under abscisic acid and drought treatments. PLoS One 7, e40120.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schnable P. S., Ware D., Fulton R. S., Stein J. C., Wei F., Pasternak S. et al. 2009 The B73 maize genome: complexity, diversity, and dynamics. Science 326, 1112–1115.

    Article  CAS  PubMed  Google Scholar 

  • Sekhon R. S., Briskine R., Hirsch C. N., Myers C. L., Springer N. M., Buell C. R. et al. 2013 Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS One 8, e61005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shinozaki K., Yamaguchi-Shinozaki K. and Seki M. 2003 Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6, 410–417.

    Article  CAS  PubMed  Google Scholar 

  • Steponkus P. L. 1984 Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol. 35, 543–584.

    Article  CAS  Google Scholar 

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007 MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Team R. D. C. 2005 R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

  • Thompson J. D., Higgins D. G. and Gibson T. J. 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K. and Shinozaki K. 2005 Organization of cis-acting regulatory elements in osmotic- and cold-stressresponsive promoters. Trends Plant Sci. 10, 88–94.

  • Zhao Y., Zhou Y. Q., Jiang H. Y., Li X. Y., Gan D. F., Peng X. J. et al. 2011 Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS One 6, e28488.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng J., Fu J., Gou M., Huai J., Liu Y., Jian M. et al. 2010 Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol. Biol. 72, 407– 421.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (no. 11075001 and 31301324) and the Higher Education Revitalization Project of Anhui Province (2013zdjy057). The authors would like to thank the members of the Key Laboratory of Crop Biology of Anhui province for their assistance in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SUWEN ZHU.

Additional information

Zhao Y., Tong H., Cai R., Peng X., Li X., Gan D. and Zhu S. 2014 Identification and characterization of the RCI2 gene family in maize (Zea mays). J. Genet. 93, xx–xx

Yang Zhao and Haiqing Tong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ZHAO, Y., TONG, H., CAI, R. et al. Identification and characterization of the RCI2 gene family in maize (Zea mays). J Genet 93, 655–666 (2014). https://doi.org/10.1007/s12041-014-0421-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-014-0421-9

Keywords

Navigation