Skip to main content
Log in

Why are Hydrogen Bonds Directional?

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The recent IUPAC recommendation on the definition of hydrogen bonding points out that directionality is a defining characteristic of a hydrogen bond and the angle X-H-Y is generally linear or 180. It also suggests that the X-H⋯Y angle be greater than 110 for an interaction to be characterized as a hydrogen bond but does not provide any rationale for the same. This article reports a rationale for limiting the angle, based on the electron density topology using the quantum theory of atoms in molecules. Electron density topology for common hydrogen bond donors HF, HCl, HBr, HNC, HCN and HCCH are reported in this work. These calculations lead to an interesting observation that the atomic basins of H atom in all these donor molecules are limited justifying the restriction of hydrogen bond angle. Moreover, similar analysis on some hydrogen bonded complexes confirms that beyond this angle the acceptor atom Y starts interacting with the atomic basin on X. However, conclusions based on bond lengths and angles have to be treated with care and as the IUPAC recommendation points out that independent ‘evidence for bond formation’ in every case is important.

Atomic basins, calculated using AIM theory, of HF/HCl/HBr show that an acceptor atom A has to approach at A-H-X > 110 for forming a hydrogen bond with HX. This provides a rationale for setting a limit on the hydrogen bond angle, which has been an empirical practice so far.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Lewis G N 1916 J. Am. Chem. Soc. 38 762

    Article  CAS  Google Scholar 

  2. Langmuir I 1919 J. Am. Chem. Soc. 41 868

    Article  CAS  Google Scholar 

  3. Pauling L 1960 In The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry (Ithaca New York: Cornell University Press)

  4. Latimer W M and Rodebush W H 1920 J. Am. Chem. Soc. 42 1419

    Article  CAS  Google Scholar 

  5. Williams C, Zare R N and Arunan E 2014 Resonance 19 704

    Article  CAS  Google Scholar 

  6. Arunan E, Desiraju G R, Klein R A, Sadlej J, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B and Nesbitt D J 2011 Pure Appl. Chem. 83 1637

    CAS  Google Scholar 

  7. Arunan E, Desiraju G R, Klein R A, Sadlej, Scheiner S, Alkorta I, Clary D C, Crabtree R H, Dannenberg J J, Hobza P, Kjaergaard H G, Legon A C, Mennucci B and Nesbitt D J 2011 Pure Appl. Chem. 83 1619

    CAS  Google Scholar 

  8. Weinhold F and Klein R A 2014 Angew. Chem. Int. Ed. Engl. 126 11396

    Article  Google Scholar 

  9. Mata I, Alkorta I, Molins E and Espinosa E 2012 ChemPhysChem 13 1421

    Article  CAS  Google Scholar 

  10. Hansen A S, Du L and Kjaergaard H G 2014 J. Phys. Chem. Lett. 5 4225

    Article  CAS  Google Scholar 

  11. Shahi A and Arunan E 2014 Phys. Chem. Chem. Phys. 16 22935

    Article  CAS  Google Scholar 

  12. Zhang J, Chen P, Yuan B, Ji W, Cheng Z and Qiu X 2013 Science 342 611

    Article  CAS  Google Scholar 

  13. Hämäläinen S K, van der Heijden N, van der Lit J, den Hartog S, Liljeroth P and Swart I 2014 Phys. Rev. Lett. 113 186102

    Article  Google Scholar 

  14. Guo C -S, Xin X, Van Hove M A, Ren X and Zhao Y 2015 J. Phys. Chem. C 119 14195

    CAS  Google Scholar 

  15. Buckingham A D, Del Bene J E and McDowell S A C 2008 Chem. Phys. Lett. 463 1

    Article  CAS  Google Scholar 

  16. Parajuli R and Arunan E 2013 Chem. Phys. Lett. 568-569 63

    Article  CAS  Google Scholar 

  17. Buckingham A D and Fowler P W 1985 Can. J. Chem. 63 2018

    Article  CAS  Google Scholar 

  18. Politzer P, Lane P, Concha M C, Ma Y and Murray J S 2007 J. Mol. Model. 13 305

    Article  CAS  Google Scholar 

  19. Politzer P, Murray J S and Concha M C 2007 J. Mol. Model. 13 643

    Article  CAS  Google Scholar 

  20. Desiraju G R and Steiner T 1999 In The Weak Hydrogen Bond: In Structural Chemistry in Biology (Oxford UK: Oxford University Press)

  21. Jeffery G A and Saenger W 1991 In Hydrogen Bonding in Biological Structure (Berlin: Springer Verlag)

  22. E Weber, Y Aoyama, M R Caira, G R Desiraju, J P Glusker, A D Hamilton, R E Meléndez and A Nangia (Eds.) 1998 In Design of Organic Solids, Topics in Current Chemistry Vol. 198 (Berlin Heidelberg: Springer)

  23. Raghavendra B, Mandal P K and Arunan E 2006 Phys. Chem. Chem. Phys. 8 5276

    Article  CAS  Google Scholar 

  24. Lakshmi B, Samuelson A G, Jovan Jose K V, Gadre S R and Arunan E 2005 New J. Chem. 29 371

    Article  CAS  Google Scholar 

  25. Arunan E, Tiwari A P, Mandal P K and Mathias P C 2002 Curr. Sci. 82 533

    CAS  Google Scholar 

  26. Gadre S and Bhadane P 1997 J. Chem. Phys. 107 5625

    Article  CAS  Google Scholar 

  27. Bader R F W 1990 In Atoms in Molecules: A Quantum Theory (Oxford UK: Oxford University Press)

  28. Klein R A 2006 Chem. Phys. Lett. 425 128

    Article  CAS  Google Scholar 

  29. Klein R A 2002 J. Am. Chem. Soc. 124 13931

    Article  CAS  Google Scholar 

  30. Nyburg S C 1979 Acta Crystallogr. Sect. A 35 641

    Article  Google Scholar 

  31. Nyburg S C and Faerman C H 1985 Acta Crystallogr. Sect. B Struct. Sci. 41 274

    Article  Google Scholar 

  32. Eramian H, Tian Y -H, Fox Z, Beneberu H Z and Kertesz M 2013 J. Phys. Chem. A 117 14184

    Article  CAS  Google Scholar 

  33. Legon A and Millen D 1987 Chem. Soc. Rev. 16 467

    Article  CAS  Google Scholar 

  34. Gadre S R and Shirsat R N 2000 In Electrostatics of Atoms and Molecules (Hyderabad: Universities Press)

  35. P Politzer and D G Truhlar (Eds.) 1981 In Chemical Applications of Atomic and Molecular Electrostatic Potentials (New York: Springer)

  36. Suresh C H and Koga N 2002 J. Am. Chem. Soc. 124 1790

    Article  CAS  Google Scholar 

  37. Kumar A, Gadre S R, Mohan N and Suresh C H 2014 J. Phys. Chem. A 118 526

    Article  CAS  Google Scholar 

  38. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, Hratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. J A, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam J M, Klene M J, Knox E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas O J, Foresman B, Ortiz J V, Cioslowski J and Fox D J 2013 In Gaussian 09, Revision D.01 (Wallingford CT: Gaussian, Inc.)

    Google Scholar 

  39. Todd A and Keith T K 2013 AIMAll (Version 13.11.04) (Gristmill Software: Overland Park KS, USA)

  40. Bondi A 1964 J. Phys. Chem. 68 441

    Article  CAS  Google Scholar 

  41. Nyburg S C, Faerman C H and Prasad L 1987 Acta Crystallogr. Sect. B Struct. Sci. 43 106

    Article  Google Scholar 

  42. Chopra D, Row Guru T N, Arunan E and Klein R A 2010 J. Mol. Struct. 964 126

    Article  CAS  Google Scholar 

  43. Goswami M and Arunan E 2011 Phys. Chem. Chem. Phys. 13 14153

    Article  CAS  Google Scholar 

  44. Johnson E R, Keinan S, Mori-Sánchez P, Contreras-García J, Cohen A J and Yang W 2010 J. Am. Chem. Soc. 132 6498

    Article  CAS  Google Scholar 

  45. Lane J R, Contreras-García J, Piquemal J -P, Miller B and Kjaergaard H J 2013 J. Chem. Theo. Comput. 9 3263

    Article  CAS  Google Scholar 

  46. Lakshmipriya A, Rama Chaudhari S, Shahi A, Arunan E and Suryaprakash N 2015 Phys. Chem. Chem. Phys. 17 7528

    Article  CAS  Google Scholar 

  47. Shahi A and Arunan E 2015 Phys. Chem. Chem. Phys. 17 24774

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the Super Computer Research Center and Inorganic and Physical Chemistry department at the Indian Institute of Science for providing good computational facilities and the Indo-French Centre for Promotion of Advanced Scientific Research for financial support. AS would like to thank Council of Scientific and Industrial Research (CSIR) for the fellowship. AS also thanks Sharon Priya Gnanasekar and Kabir Kumbhar for their help in calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ELANGANNAN ARUNAN.

Additional information

AUTHOR INFORMATION

AS is presently at the Institute of Chemistry, The Hebrew University of Jerusalem, Israel. 91904.

Special Issue on CHEMICAL BONDING

Celebrating 100 years of Lewis Chemical Bond

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SHAHI, A., ARUNAN, E. Why are Hydrogen Bonds Directional?. J Chem Sci 128, 1571–1577 (2016). https://doi.org/10.1007/s12039-016-1156-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1156-3

Keywords

Navigation