Skip to main content
Log in

On the issues of resolving a low melting combination as a definite eutectic or an elusive cocrystal: A critical evaluation

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Cocrystals and eutectics are different yet related crystalline multi-component adducts with diverse applications in pharmaceutical and materials fields. Recently, they were shown to be alternate products of cocrystallization experiments. Whereas a cocrystal shows distinct diffraction, spectroscopic and thermal signatures as compared to parent components, the hallmark of a eutectic is its low melting nature. However, in certain cases, there can be a problem when one resorts to design a cocrystal and assess its formation vis-à-vis a eutectic. In the absence of a gold standard method to make a cocrystal, it is often difficult to judge how exhaustive should the cocrystallization trials be to ensure the accomplishment of a desired/putative cocrystal. Further, a cocrystal can manifest with intermolecular interactions and/or crystal structure similar to that of its parent compounds such that the conventional diffraction and spectroscopic techniques will be of little help to conclusively infer the formation of cocrystal in the lack of single crystals. Such situations combined with low melting behavior of a combination brings the complication of resolving the combination as a cocrystal or eutectic since now both the adducts share common features. Based on the curious case of Caffeine–Benzoic acid combination, this study aims to unfold the intricate issues related to the design, formation and characterization of cocrystals and eutectics for a way forward. The utility of heteronuclear seeding methodology in establishing a given combination as a cocrystal-forming one or a eutectic-forming one in four known systems is appraised.

The notion of mutual exclusivity of cocrystal and eutectic from cocrystallization and issues related to their structural organization and manifestation are discussed. The potential of hetero seeding in facilitating the formation of a putative cocrystal and thus establishing a given combination as a cocrystal-forming one or a eutectic-forming one is appraised.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. (a) Cherukuvada S and Nangia A 2014 Chem. Commun. 50 906; (b) http://www.fda.gov/downloads/Drugs/Guidances/UCM281764.pdf (accessed on 23rd August, 2015); (c) http://www.ema.europa.eu/docs/en_GB/document_library/Scientific\guideline/2014/07/WC500170467.pdf (accessed on 23rd August, 2015); (d) Stoler E and Warner J C 2015 Molecules 20 14833; (e) Almarsson Ö, Peterson M L and Zaworotko M J 2012 Pharm. Pat. Anal. 3 313; (f) Cherukuvada S and Nangia A 2012 CrystEngComm 14 2579; (g) Babu N J and Nangia A 2011 Cryst. Growth Des. 11 2662; (h) Cherukuvada S, Babu N J and Nangia A 2011 J. Pharm. Sci. 100 3233; (i) Friščić T and Jones W 2010 J. Pharm. Pharmacol. 62 1547; (j) Aakeröy C B, Forbes S and Desper J 2009 J. Am. Chem. Soc. 132 17048; (k) Schultheiss N and Newman A 2009 Cryst. Growth Des. 9 2950; (l) Childs S L, Rodríguez-Hornedo N, Reddy L S, Jayasankar A, Maheshwari C, McCausland L, Shipplett R and Stahly B C 2008 CrystEngComm 10 856; (m) Thayer A N 2007 Chem. Eng. News 85 17; (n) Trask A V 2007 Mol. Pharmaceutics 4 301; (o) Vishweshwar P, Mcmahon J A, Bis J A and Zaworotko M J 2006 J. Pharm. Sci. 95 499; (p) Almarsson Ö and Zaworotko M J 2004 Chem. Commun. 1889; (q) Childs S L, Chyall L J, Dunlap J T, Smolenskaya V N, Stahly B C and Stahly G P 2004 J. Am. Chem. Soc. 126 13335; (r) Broberg B F J and Evers H C A 1985 US Pat. 4529601; (s) Moore M D and Wildfong P L D 2009 J. Pharm. Innov. 4 36; (t) Ruecroft G, Parikh D and Prosonix Ltd. 2013 WO Pat. 2013/021199 A2; (u) Jain H, Khomane K S and Bansal A K 2014 Cryst. Eng. Comm. 16 8471; (v) Almarsson Ö and Vadas E B 2015 Cryst. Growth Des. 15 5645; (w) Duggirala N K, Perry M L, Almarsson Ö and Zaworotko M J 2016 Chem. Commun. 52 640

  2. (a) Askeland D R and Fulay P P 2009 In Essentials of Materials Science and Engineering 2nd edn. (Toronto: Cengage Learning); (b) Sharma S D, Kitano H and Sagara K 2004 Res. Rep. Fac. Eng. Mie Univ. 29 31; (c) Lee L-S, Lin C-W and Kao C-H 2000 Ind. Eng. Chem. Res. 39 2068; (d) Urbanus J, Roelands C P M, Verdoes D, Jansens D J and ter Horst J H 2010 Cryst. Growth Des. 10 1171; (e) Bolton O and Matzger A J 2011 Angew. Chem. Int. Ed. 50 8960; (f) Morimoto M and Irie M 2010 J. Am. Chem. Soc. 132 14172; (g) Shilei L, Neng Z and Guohui F 2006 Energy Build. 38 708; (h) Huang X, Qin D, Zhang X, Luo Y, Huang S, Li D and Meng Q 2013 RSC Adv. 3 6922; (i) Griffini G, Brambilla L, Levi M, Castiglioni C, Zoppo M D and Turri S 2014 RSC Adv. 4 9893

  3. Although there is no sharp organic/molecular restriction for cocrystals and several ionic cocrystals were known (Beevers C A and Cochran W 1946 Nature 157 872; Braga D, Grepioni F, Maini L, Prosperi S, Gobetto R and Chierotti M R 2010 Chem. Commun. 46 7715), majority of the definitions on cocrystal[1]k state it to be a multi-molecular entity and it had been termed as ‘molecular compound’, ‘molecular complex’, ‘molecular crystal’, ‘heteromolecular crystal’ etc. (Stahly G P 2009 Cryst. Growth Des. 9 4212). Molecular salt and cocrystal as the two extremes of the salt–cocrystal continuum, with the former being the ionized entity and the latter an un-ionized one, were well appreciated in the literature.[1]b,c,o,p

  4. The analogy between cocrystal and intermetallic compound brought herein should be considered in a supramolecular/structural sense and not at atomic/ molecular level where the bonding is different. Both cocrystal and intermetallic compound have distinct structural integrity as compared to their respective parent materials.

  5. Aitipamula S, Banerjee R, Bansal A K, Biradha K, Cheney M L, Choudhury A R, Desiraju G R, Dikundwar A G, Dubey R, Duggirala N, Ghogale P P, Ghosh S, Goswami P K, Goud N R, Jetti R K R, Karpinski P, Kaushik P, Kumar D, Kumar V, Moulton B, Mukherjee A, Mukherjee G, Myerson A S, Puri V, Ramanan A, Rajamannar T, Reddy C M, Rodríguez-Hornedo N, Rogers R D, Row T N G, Sanphui P, Shan N, Shete G, Singh A, Sun C C, Swift J A, Thaimattam R, Thakur T S, Thaper R K, Thomas S P, Tothadi S, Vangala V R, Vishweshwar P, Weyna D R and Zaworotko M J 2012 Cryst. Growth Des. 12 2147; correction - 2012 12 4290

  6. Etter M C 1990 Acc. Chem. Res. 23 120

    Article  CAS  Google Scholar 

  7. (a) Desiraju G R 1995 Angew. Chem. Int. Ed. 34 2311; (b) Desiraju G R, Vittal J J and Ramanan A 2011 In Crystal Engineering: A Textbook (Singapore: World Scientific)

  8. The classification of supramolecular synthons as (i) homosynthons and (ii) heterosynthons by Walsh et al. (Walsh R D B, Bradner M W, Fleischman S, Morales L A, Moulton B, Rodríguez-Hornedo N and Zaworotko M J 2003 Chem. Commun. 186) has also been instrumental in catalysing the research on cocrystals

  9. (a) Aakeröy C B, Beatty A M and Helfrich B A 2001 Angew. Chem. Int. Ed. 40 3240; (b) Aakeröy C B, Desper J and Urbina J F 2005 Chem. Commun. 2820; (c) Aakeröy C B, Desper J and Fasulo M E 2006 CrystEngComm 8 586; (d) Clarke H D, Hickey M B, Moulton B, Perman J A, Peterson M L, Wojtas Ł, Almarsson Ö and Zaworotko M J 2012 Cryst. Growth Des. 12 4194; (e) Aitipamula S, Wong A B H, Chow P S and Tan R B H 2013 CrystEngComm 15 5877; (f) Tothadi S and Desiraju G R 2013 Chem. Commun. 49 7791; (g) Bolla G and Nangia A 2015 Chem. Commun. 51 15578; (h) Bhogala B R and Nangia A 2008 New J. Chem. 32 800; (i) Mir N A, Dubey R and Desiraju G R 2016 IUCrJ 3, doi: 10.1107/S2052252515023945

  10. (a) Lemmerer A, Bernstein J and Spackman M A 2012 Chem. Commun. 48 1883; (b) Mohammad M A, Alhalaweh A and Velaga S P 2011 Int. J. Pharmaceutics 407 63; (c) Seaton C C and Parkin A 2011 Cryst. Growth Des. 11 1502; (d) Karki S, Friščić T, Fabián L and Jones W 2010 CrystEngComm 12 4038

  11. (a) Childs S L, Wood P A, Rodríguez-Hornedo N, Reddy L S and Hardcastle K I 2009 Cryst. Growth Des. 9 1869; (b) Childs S L, Stahly G P and Park A 2007 Mol. Pharmaceutics 4 323; (c) Sarma B, Nath N K, Bhogala B R and Nangia A 2009 Cryst. Growth Des. 9 1546; (d) In Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice 2009 Qiu Y, Chen Y and Zhang G G Z (eds.) (New York: Academic Press); (e) Li Z J, Abramov Y, Bordner J, Leonard J, Medek A and Trask A V 2006 J. Am. Chem. Soc. 128 8199; (f) Perumalla S R and Sun C C 2013 CrystEngComm 15 5756; (g) Suresh K, Mannava M K C and Nangia A 2014 RSC Adv. 4 58357; (h) Kitaigorodsky A I 1984 In Mixed Crystals (Berlin: Springer-Verlag)

  12. (a) Cherukuvada S and Row T N G 2014 Cryst. Growth Des. 14 4187; (b) Prasad K D, Cherukuvada S, Stephen L D and Row T N G 2014 CrystEngComm 16 9930; (c) Prasad K D, Cherukuvada S, Ganduri R, Stephen L D, Perumalla S and Row T N G 2015 Cryst. Growth Des. 15 858; (d) Kaur R, Gautam R, Cherukuvada S and Row T N G 2015 IUCrJ 2 341; (e) Ganduri R, Cherukuvada S and Row T N G 2015 Cryst. Growth Des. 15 3474

  13. Cocrystallization needs to be defined broadly as the study of the formation of crystalline multi-component adducts such as cocrystals, solid solutions, eutectics, etc. and not just be reserved to cocrystals. Otherwise, in the light of eutectics as designable materials,[1]a,[12]one may tend to employ the term ‘eutectization’.

  14. Bučar D -K, Day G M, Halasz I, Zhang G G Z, Sander J R G, Reid D G, MacGillivray L R, Duera M J and Jones W 2013 Chem. Sci. 4 4417

    Article  Google Scholar 

  15. Sekiguchi K 1961 Yakugaku Zasshi 81 669

    CAS  Google Scholar 

  16. Davis R E, Lorimer K A, Wilkowski M A, Rivers J H, Wheeler K A and Bowers J 2004 ACA Trans. 39 41

    CAS  Google Scholar 

  17. (a) Mitchell C A, Yu L and Ward M D 2001 J. Am. Chem. Soc. 123 10830; (b) Braga D, Maini L, de Sanctis G, Rubini K, Grepioni F, Chierotti M R and Gobetto R 2009 Chem. Eur. J. 15 1508; (c) Lang M, Grzesiak A L and Matzger A J 2002 J. Am. Chem. Soc. 124 14834

  18. Zhang S -W, Harasimowicz M T, de Villiers M M and Yu L 2013 J. Am. Chem. Soc. 135 18981

    Article  CAS  Google Scholar 

  19. (a) Davey R J, Blagden N, Potts G D and Docherty R 1997 J. Am. Chem. Soc. 119 1767; (b) Beckmann W 2000 Org. Pro. Res. Dev. 4 372; (c) Gu C-H, Chatterjee K, Young Jr. V and Grant D J W 2002 J. Cryst. Growth 235 471; (d) Thallapally P K, Jetti R K R, Katz A K, Carrell H L, Singh K, Lahiri K, Kotha S, Boese R and Desiraju G R 2004 Angew. Chem. Int. Ed. 43 1149; (e) Kelleher J M, Lawrence S E and Moynihan H A 2006 CrystEngComm 8 327; (f) Devi K R and Srinivasan K 2014 CrystEngComm 16 707

  20. Shan N, Toda F and Jones W 2002 Chem. Commun. 2372

  21. Cambridge Structural Database, ver. 5.36, ConQuest 1.17, www.ccdc.cam. ac.uk.

  22. (a) Zhang G G Z, Henry R F, Borchardt T B and Lou X 2007 J. Pharm. Sci. 96 990; (b) Rodríguez-Hornedo N, Nehm S J, Seefeldt K F, Pagán-Torres Y and Falkiewicz C J 2006 Mol. Pharmaceutics 3 362

  23. X’Pert HighScore Plus, The complete powder analysis tool, PANalytical B. V. 2003

  24. Barbour L J, X-Seed, Graphical Interface to SHELX-97 and POV-Ray, Program for Better Quality of Crystallographic Figures, University of Missouri-Columbia, Columbia, MO, 1999

  25. http://scistore.cambridgesoft.com/DesktopSoftware/ ChemBioDrawUltra14Suite (accessed on 23rd August, 2015)

  26. Lu E, Rodríguez-Hornedo N and Suryanarayanan R 2008 CrystEngComm 10 665

    Article  CAS  Google Scholar 

  27. (a) Das U, Chattopadhyay B, Mukherjee M and Mukherjee A K 2012 Cryst. Growth Des. 12 466; (b) Lapidus S H, Stephens P W, Arora K K, Shattock T R and Zaworotko M J 2010 Cryst. Growth Des. 10 4630

  28. http://reference.iucr.org/dictionary/Isomorphous_crystals (accessed on 23rd August, 2015)

  29. Olmsted B K and Ward M D 2011 CrystEngComm 13 1070

    Article  CAS  Google Scholar 

  30. Dikundwar A G, Venkateswarlu C., Chandrakala R N, Chandrasekaran S and Row T N G 2013 CrystEngComm 15 5403

    Article  CAS  Google Scholar 

  31. Wang L, Zhao L, Liu M, Chen R, Yang Y and Gu Y 2012 Sci. China Chem. 55 2115

    Article  CAS  Google Scholar 

  32. Bevill M J, Vlahova P I and Smit J P 2014 Cryst. Growth Des. 14 1438

    Article  CAS  Google Scholar 

  33. Desiraju G R 2013 J. Am. Chem. Soc. 135 9952

    Article  CAS  Google Scholar 

  34. (a) Rai U S and Rai R N 1998 J. Ther. Anal. 53 883; (b) Podolinsky V V, Taran Yu N and Drykin V G 1989 J. Cryst. Growth 96 445; (c) Sharma B L, Sharma N K and Bassi P S 1984 J. Cryst. Growth 67 633; (d) Singh N B and Singh N B 1978 Krist. Tech. 13 1175; (e) Rastogi R P and Bassi P S 1964 J Phys. Chem. 68 2398

  35. Aakeröy C B 2015 Acta Crystallogr., Sect. B: Struct. Sci. Cryst. Eng. Mat. 71 387

    Article  Google Scholar 

  36. (a) Musumeci D, Hunter C A, Prohens R, Scuderi S and McCabe J F 2011 Chem. Sci. 2 883; (b) Issa N, Karamertzanis P G, Welch G W A and Price S L 2009 Cryst. Growth Des. 9 442

  37. (a) Habgood M, Deij M A, Mazurek J, Price S L and ter Horst J H 2010 Cryst. Growth Des. 10 903; (b) Eccles K S, Deasy R E, Fábián L, Braun D E, Maguire A R and Lawrence S E 2011 CrystEngComm 13 6923; (c) Tothadi S and Desiraju G R 2012 Phil. Trans R. Soc. A 370 2900

  38. (a) Coquerel G 2014 Chem. Soc. Rev. 43 2286; (b) Manin A N, Voronin A P, Manin N G, Vener M V, Shishkina A V, Lermontov A S and Perlovich G L 2014 J. Phys. Chem. B 118 6803

  39. (a) Lin H-L, Zhang G-C, Hsu P-C and Lin S-Y 2013 Microchem. J. 110 15; (b) Feng Y, Dang L and Wei H 2012 Cryst. Growth Des. 12 2068

Download references

Acknowledgements

I thank the University Grants Commission, India, for Dr. D. S. Kothari Postdoctoral Fellowship. I profusely thank Prof. T. N. Guru Row, Indian Institute of Science, for his encouragement to write this monograph. My special thanks to Mr. Ramesh Ganduri, Indian Institute of Science, for his help in collecting the PXRD patterns. Infrastructural facilities of the Institute are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SURYANARAYAN CHERUKUVADA.

Additional information

Supplementary Information (SI)

Supramolecular schematics, packing diagrams of cocrystals, preparation and characterization of cocrystals and eutectics, figures S1S5 and table S1 are available in Supplementary Information at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 676 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CHERUKUVADA, S. On the issues of resolving a low melting combination as a definite eutectic or an elusive cocrystal: A critical evaluation. J Chem Sci 128, 487–499 (2016). https://doi.org/10.1007/s12039-016-1055-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1055-7

Keywords

Navigation