Skip to main content

Advertisement

Log in

Harnessing phytomicrobiome signals for phytopathogenic stress management

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Harnessing the phytomicrobiome offers a great opportunity to improve plant productivity and quality of food. In the recent past, several phytomicrobiome microbes have been explored for their potential involvement in increasing crop yield. This review strategically targets to harness the various dimensions of phytomicrobiome for biotic stress management of crop plants. The tripartite interaction involving plant-microbiome-pathogen has been discussed. Positive interventions in this system so as to achieve disease tolerant plants has been forayed upon. The different signalling molecules sent out by interacting partners of phytomicrobiome have also been analysed. The novel concept of artificial microbial consortium in mitigation of pathogenic stress has also been touched upon. The aim of this review is to explore the hidden potential of phytomicrobiome diversity as a potent tool against phytopathogens, thereby improving crop health and productivity in a sustainable way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Abbreviations

AMC:

Artificial microbial consortium

AMF:

Arbuscular mycorrhizal fungi

BGM:

Botrytis grey mould

CAT:

Catalase

CSP:

Common symbiotic pathway

2, 4-DAPG:

2, 4-Diacetylphloroglucinol

ET:

Ethylene

ETI:

Effector-triggered

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

HMW:

High molecular weight

HCN:

Hydrogen cyanide

IAA:

Indole-3-acetic acid

ISR:

Induced systemic resistance

JA:

Jasmonate

LCOs:

Lipochitooligosaccharides

LMW:

Low molecular weight

LysM:

Lysin motives

MBCA:

Microbial biological control agents

PAMPs:

Pathogen-associated molecular patterns

PPPs:

Plant protection products

PRPs:

Pathogen recognition patterns

PTI:

PAMP-triggered immunity

PGPBs:

Plant growth promoting bacteria

PGPRs:

Plant growth promoting rhizobacteria

PR:

Pathogenesis related

ROS:

Reactive oxygen species (ROS)

SA:

Salicylic acid

SOD:

Superoxide dismutase

SAR:

Systemic acquired resistance

References

  • Akiyama K, Matsuzaki KI and Hayashi H 2005 Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 435 824–827

    CAS  PubMed  Google Scholar 

  • Anagnostakis SL and Hillman B 1992 Evolution of chestnut tree and its blight. Arnoldia. 52 3–10

    Google Scholar 

  • Aramsirirujiwet Y, Gumlangmak C and Kitpreechavanich V 2016 Studies on antagonistic effect against plant pathogenic fungi from endophytic fungi isolated from Hottuynia cordata Thunb and screening for siderophore and indole-3-acetic acid production. KKU Res. J. 211 55–66

    Google Scholar 

  • Arif I, Batool M and Schenk PM 2020 Plant microbiome engineering expected benefits for improved crop growth and resilience. Trends Biotechnol. 38 1385–1396

    CAS  PubMed  Google Scholar 

  • Arseneault T, Goyer C and Filion M 2013 Phenazine production by Pseudomonas sp. LBUM223 contributes to the biological control of potato common scab. Phytopathol. 103 995–1000

    CAS  Google Scholar 

  • Arseneault T, Goyer C and Filion M 2015 Pseudomonas fluorescens LBUM223 increases potato yield and reduces common scab symptoms in the field. Phytopathology. 105 1311–1317

    CAS  PubMed  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P and Höfte M 2002 Induction of systemic resistance to botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2 Role of salicylic acid pyochelin and pyocyanin. Mol. Plant-Microbe Interact. 15 1147–1156

    CAS  PubMed  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S and Smith DL 2018 Plant growth-promoting rhizobacteria context mechanisms of action and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9 1473

    PubMed  PubMed Central  Google Scholar 

  • Badri DV and Vivanco JM 2009 Regulation and function of root exudates. Plant Cell Environ. 32 666–681

    CAS  PubMed  Google Scholar 

  • Badri DV, Quintana N, Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK and Vivanco JM 2009 An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol. 151 2006–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker B, Zambryski P, Staskawicz B and Kumar SPD 1997 Signalling in plant-microbe interactions. Science. 276 726–733

    CAS  PubMed  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Jonge R and Berendsen R 2018 The soil-borne legacy. Cell. 172 1178–1180

    CAS  PubMed  Google Scholar 

  • Baldani VLD, Baldani JI and Dobereiner J 1987 Inoculation of field-grown wheat Triticum aestivum with Azospirillum spp in Brazil. Biol. Fertil. Soils. 4 37–40

    Google Scholar 

  • Bamisile BS, Dash CK, Akutse KS, Keppanan R and Wang L 2018 Fungal endophytes beyond herbivore management. Front. Microbiol. 9 44

    Google Scholar 

  • Bán R, Baglyas G, Virányi F, Barna B, Posta K, Kiss J and Körösi K 2017 The chemical inducer BTH benzothiadiazole and root colonization by mycorrhizal fungi Glomus spp. trigger resistance against white rot Sclerotinia sclerotiorum in sunflower. Acta Biol. Hung. 68 50–59

    PubMed  Google Scholar 

  • Bashan Y 1998 Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol. Adv. 16 729–770

    CAS  Google Scholar 

  • Basu S and Kumar G 2020 Stress Signalling in the Phytomicrobiome Breadth and Potential; in Phyto-Microbiome in Stress Regulation Environmental and Microbial Biotechnology (Springer) pp 245–268

  • Bauer WD and Teplitski M 2001 Can plants manipulate bacterial quorum sensing? Aust. J. Plant Physiol. 28 913–921

    CAS  Google Scholar 

  • Behm JE, Geurts R and Kiers ET 2020 Parasponia a novel system for studying mutualism stability. Trends Plant Sci. 19 757–763

    Google Scholar 

  • Bell TH, Cloutier-Hurteau B, Al-Otaibi F, Turmel MC, Yergeau E, Courchesne F, et al. 2015 Early rhizosphere microbiome composition is related to the growth and Zn uptake of willows introduced to a former landfill. Environ. Microbiol. 17 3025–3038

    CAS  PubMed  Google Scholar 

  • Berlec A 2012 Novel techniques and findings in the study of plant microbiota Search for plant probiotics. Plant Sci. 193 96–102

    PubMed  Google Scholar 

  • Berendsen RL, Pieterse CM and Bakker PA 2012 The rhizosphere microbiome and plant health. Trends Plant Sci. 17 478–486

    CAS  PubMed  Google Scholar 

  • Berendsen RL, Vismans G, Yu K, Song Y, Jonge R, Burgman WP and Pieterse CM 2018 The disease-induced assemblage of a plant-beneficial bacterial consortium. ISME J. 12 1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatt P, Verma A, Verma S, Anwar MdS, Prasher P, Mudila H and Chen S 2020 Understanding phytomicrobiome: a potential reservoir for better crop management. Sustainability 2 5446

    Google Scholar 

  • Bhattacharyya PN and Jha DK 2012 Plant growth-promoting rhizobacteria PGPR emergence in agriculture. World J. Microbiol. Biotechnol. 28 1327–1350

    CAS  PubMed  Google Scholar 

  • Bordenstein SR and Theis KRJ 2015 Host biology in light of the microbiome ten principles of holobionts and hologenomes. PLoS Biol.. https://doi.org/10.1371/journal.pbio.1002226

    Article  PubMed  PubMed Central  Google Scholar 

  • Brakhage AA and Schroeckh V 2011 Fungal secondary metabolites – strategies to activate silent gene clusters. Fungal Genet. Biol. 48 15–22

    CAS  PubMed  Google Scholar 

  • Cai T, Cai W, Zhang J, Zheng H, Tsou AM, Xiao L, Zhong Z and Zhu J 2009 Host legume-exuded antimetabolites optimize the symbiotic rhizosphere. Mol. Microbiol. 73 507–517

    CAS  PubMed  Google Scholar 

  • Camehl I, Sherameti I, Venus Y, Bethke G, Varma A, Lee J, et al. 2010 Ethylene signaling and ethylene-targeted transcription factors are required to balance beneficial and nonbeneficial traits in the symbiosis between the endophytic fungus Piriformospora indica and Arabidopsis thaliana. New Phytol. 185 1062–1073

    CAS  PubMed  Google Scholar 

  • Cameron DD, Neal AL, van Wees SC and Ton J 2013 Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci. 18 539–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrión VJ, Jaramillo JP, Cordovez V, et al. 2019 Pathogen-induced activation of disease suppressive functions in the endophytic root microbiome. Science. 366 606–612

    PubMed  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A and Wanek W 2019 Root exudation of primary metabolites mechanisms and their roles in plant responses to environmental stimuli. Front. Plant Sci. 10 420

    PubMed  PubMed Central  Google Scholar 

  • Chouhan GK, Verma JP, Jaiswal DK, et al. 2021 Phytomicrobiome for promoting sustainable agriculture and food security Opportunities challenges and solutions. Microbiol. Res. 248 126763

    CAS  PubMed  Google Scholar 

  • Cissoko M, Hocher V, Gherbi H, et al. 2018 Actinorhizal signaling molecules Frankia root hair deforming factor shares properties with NIN inducing factor. Front. Plant Sci. 9 1494

    PubMed  PubMed Central  Google Scholar 

  • Clúa J, Roda C, Zanetti MA and Blanco FA 2018 Compatibility between legumes and rhizobia for the establishment of a successful nitrogen-fixing symbiosis. Genes. 9 125

    PubMed Central  Google Scholar 

  • Collins NC, Tardieu F and Tuberosa R 2008 Quantitative trait loci and crop performance under abiotic stress: where do we stand? Plant Physio. 147 469–486

    CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C and Barka EA 2005 Endophytic colonization of Vitis vinifera L by plant growth-promoting bacterium Burkholderia sp strain 45. PsJN. Appl. Environ. Microbiol. 71 1685–1693

    CAS  PubMed  Google Scholar 

  • Compant S, Clément C and Sessitsch A 2010 Plant growth-promoting bacteria in the rhizo- and endosphere of plants their role colonization mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42 669–678

    CAS  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G and Kim DS 1995 Molecular mechanisms of defense by rhizobacteria against root disease. Proc. Natl. Acad. Sci. USA 92 4197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dakora FD, Matiru VN and Kanu AS 2015 Rhizosphere ecology of lumichrome and riboflavin two bacterial signal molecules eliciting developmental changes in plants. Front. Plant Sci. 6 700

    PubMed  PubMed Central  Google Scholar 

  • Dangl JL, Horvath DM and Staskawicz BJ 2013 Pivoting the plant immune system from dissection to deployment. Science 341 746–751

    CAS  PubMed  Google Scholar 

  • Danhorn T and Fuqua C 2007 Biofilm formation by plant associated bacteria. Annu. Rev. Microbiol. 61401 22

    Google Scholar 

  • De-la-Peña C and Loyola-Vargas VM 2014 Biotic interactions in the rhizosphere: a diverse cooperative enterprise for plant productivity. Plant Physiol. 166 701–719

    PubMed  PubMed Central  Google Scholar 

  • De Meyer G and Höfte M 1997 Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on Bean. Phytopathology. 87 588–593

    PubMed  Google Scholar 

  • De Souza JT, Weller DM and Raaijmakers JM 2003 Frequency diversity and activity of 2 4-diacetylphloroglucinol producing fluorescent Pseudomonas spp in Dutch take-all decline soils. Phytopathology 93 54–63

    PubMed  Google Scholar 

  • Dempsey DA and Klessig DF 2012 SOS - too many signals for systemic acquired resistance? Trends Plant Sci. 17 538–545

    CAS  PubMed  Google Scholar 

  • Deshmukh SD and Kogel KH 2007 Piriformospora indica protects barley from root rot caused by Fusarium graminearum. J. Plant Dis. Protect. 114 263–268

    Google Scholar 

  • Dessaux Y, Grandclément C and Faure D 2016 Engineering the rhizosphere. Trends Plant Sci. 21 266–278

    CAS  PubMed  Google Scholar 

  • Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF and Zhang LH 2001 Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411 813–817

    CAS  PubMed  Google Scholar 

  • Durrant WE and Dong X 2004 Systemic acquired resistance. Annu. Rev. Phytopathol. 42 185–209

    CAS  PubMed  Google Scholar 

  • El-Borollosy AM and Oraby MM 2012 Induced systemic resistance against cucumber mosaic cucumovirus and promotion of cucumber growth by some plant growth-promoting rhizobacteria. Ann. Agric. Sci. 57 91–97

    Google Scholar 

  • Enebe MC and Babalola OO 2019 The impact of microbes in the orchestration of plants’ resistance to biotic stress a disease management approach. Appl. Microbiol. Biotechnol. 103 9–25

    CAS  PubMed  Google Scholar 

  • Farrar K, Bryant D and Cope-Selby N 2014 Understanding and engineering beneficial plant–microbe interactions plant growth promotion in energy crops. Plant Biotechnol. J. 12 1193–1206

    PubMed  PubMed Central  Google Scholar 

  • Figueredo MS, Tonelli ML, Ibánez F, Morla F, Cerioni G, Tordable MC and Fabra A 2017 Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiol. Res. 197 65–73

    CAS  PubMed  Google Scholar 

  • French E, Kaplan I, Iyer-Pascuzzi A, Nakatsu CH and Enders L 2021 Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants. 7 256–267

    PubMed  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M and Sarniguet A 2011 Bacterial-fungal interactions hyphens between agricultural clinical environmental and food microbiologists. Microbiol. Mol. Biol. Rev. 75 583–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu ZQ and Dong X 2013 Systemic acquired resistance turning local infection into global defense. Annu. Rev. Plant Biol. 64 839–863

    CAS  PubMed  Google Scholar 

  • Gao M, Teplitski M, Robinson JB and Bauer WD 2003 Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant Microbe Interact. 16 827–834

    CAS  PubMed  Google Scholar 

  • Ghazalibiglar H, Hampton JG, de Jong EZ and Holyoake A 2016 Is induced systemic resistance the mechanism for control of black rot in Brassica oleracea by a Paenibacillus sp.? Biol. Control 92 195–201

    Google Scholar 

  • Giles ED, Oldroyd JD, Murray PSP and Downie JA 2011 The rules of engagement in the legume-rhizobial symbiosis. Annu. Rev. Genet. 45 119–144

    Google Scholar 

  • Gill SS, Gill R, Trivedi DK, et al. 2016 Piriformospora indica potential and significance in plant stress tolerance. Front. Microbiol. 7 332

    PubMed  PubMed Central  Google Scholar 

  • Grosch R, Scherwinski K, Lottmann J and Berg G 2006 Fungal antagonists of the plant pathogen Rhizoctonia solani selection control efficacy and influence on the indigenous microbial community. Mycol. Res. 110 1464–1474

    CAS  PubMed  Google Scholar 

  • Guerrero R, Margulis L and Berlanga M 2013 Symbiogenesis the holobiont as a unit of evolution. Int. Microbiol. 16 133–143

    PubMed  Google Scholar 

  • Gulia S, Sankhla MS, Kumar R and Sonone SS 2020 Phytomicrobiome studies for combating the abiotic stress. Biointerface Res. Appl. Chem. 11310493–10509

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK and Singh V 2015 Plant growth promoting rhizobacteria PGPR. Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 7 96–102

    CAS  Google Scholar 

  • Guttman DS, McHardy AC and Schulze-Lefert P 2014 Microbial genome-enabled insights into plant–microorganism interactions. Nat. Rev. Genet. 15 797–813

    CAS  PubMed  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Miller WG, Sikora RA and Lindow SE 2001 Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology. 91 415–422

    CAS  PubMed  Google Scholar 

  • Hart M, Antunes PM, Chaudhary VB and Abbott LK 2018 Fungal inoculants in the field is the reward greater than the risk? Funct. Ecol. 32 126–135

    Google Scholar 

  • Hartmann A, Schmid M, Tuinen D and Berg G 2009 Plant-driven selection of microbes. Plant Soil. 321 235–257

    CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R and Ahmed I 2010 Soil beneficial bacteria and their role in plant growth promotion: a review. Ann. Microbiol. 60 579–598

    Google Scholar 

  • He F, Sheng M and Tang M 2017 Effects of Rhizophagus irregularis on photosynthesis and antioxidative enzymatic system in Robinia pseudoacacia L. under drought stress. Front. Plant Sci. 8 576

    Google Scholar 

  • Herman M, Davidson JK and Smart CD 2008 Induction of plant defense gene expression by plant activators and Pseudomonas syringae pv. tomato in greenhouse-grown tomatoes. Phytopathology 98 1226–1232

    CAS  PubMed  Google Scholar 

  • Hoffman MT and Arnold AE 2010 Diverse bacteria inhabit living hyphae of phylogenetically diverse fungal endophytes. Appl. Environ. Microbiol. 76 4063–4075

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu CK and Micallef SA 2017 Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria. Internat. J. Food Microbiol. 259 1–6

    Google Scholar 

  • Hungria M, Campo RJ, Souza EM and Pedrosa FO 2010 Inoculation with selected strains of Azospirillum brasilense and A. lipoferum improves yields of maize and wheat in Brazil. Plant Soil. 331 413–425

    CAS  Google Scholar 

  • Jalil SU and Ansari MA 2018 Plant microbiome and its functional mechanism in response to environmental stress. Intl. J. Green Pharm. 12 81–92

    Google Scholar 

  • Kaloshian I 2004 Gene-for-gene disease resistance: bridging insect pest and pathogen defense. J. Chem. Ecol. 30 2419–2438

    CAS  PubMed  Google Scholar 

  • Kent AD and Triplett EW 2002 Microbial communities and their interactions in soil and rhizosphere ecosystems. Annu. Rev. Microbiol. 56 211–236

    CAS  PubMed  Google Scholar 

  • Khalimi K and Suprapta DN 2011 Induction of plant resistance against soybean stunt virus using some formulations of Pseudomonas aeruginosa. J. Int. Soc. of Southeast Asian Agric. Sci. 17 98–105

    Google Scholar 

  • Kong Z, Hart M and Liu H 2018 Paving the way from the lab to the field using synthetic microbial consortia to produce high-quality crops. Front. Plant Sci. 9 1467

    PubMed  PubMed Central  Google Scholar 

  • Kaul S, Choudhary M, Gupta S and Dhar MK 2021 Engineering host microbiome for crop improvement and sustainable agriculture. Front. Microbiol. 12 675917

    Google Scholar 

  • Kumar M and Ashraf S 2017 Role of Trichoderma spp. as a Biocontrol Agent of Fungal Plant Pathogens; in Probiotics and Plant Health (Springer) pp 497–506

  • Kumar M, Yadav V, Tuteja N and Johri AK 2009 Antioxidant enzyme activities in maize plants colonized with Piriformospora indica. Microbiology 155 780–790

    CAS  PubMed  Google Scholar 

  • Lacey LA and Georgis R 2012 Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematology. 44 218–225

    Google Scholar 

  • Lai YR, Lin PY, Chen CY and Huang CJ 2016 Feasible management of southern corn leaf blight via induction of systemic resistance by Bacillus cereus C1L in combination with reduced use of dithiocarbamate fungicides. Plant Pathol. J. 32 481–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanteigne C, Gadkar VJ, Wallon T, Novinscak A and Filion M 2012 Production of DAPG and HCN by Pseudomonas sp LBUM300 contributes to the biological control of bacterial canker of tomato. Phytopathology 102 967–973

    CAS  PubMed  Google Scholar 

  • Lareen A, Burton F and Schäfer P 2016 Plant root-microbe communication in shaping root microbiomes. Plant Mol. Biol. 90 575–587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lau ET, Tani A, Khew CY, Chua YQ and San Hwang S 2020 Plant growth-promoting bacteria as potential bio-inoculants and biocontrol agents to promote black pepper plant cultivation Microbiol. Res. 240 126549

    CAS  Google Scholar 

  • León-Martínez DG, Vielle-Calzada JP and Olalde-Portugal V 2012 Expression of phenazine biosynthetic genes during the arbuscular mycorrhizal symbiosis of Glomus intraradices. Braz. J. Microbiol. 43 716–738

    PubMed  PubMed Central  Google Scholar 

  • Leach JE, Triplett LR, Argueso CT and Trivedi P 2017 Communication in the Phytobiome. Cell 169 1–10

    Google Scholar 

  • Li CY, Hu WC, Pan B, Liu Y, Yuan SF, Ding YY, Li R, Zheng XY, Shen B and Shen QR 2017 Rhizobacterium Bacillus amyloliquefaciens strain SQRT3-mediated induced systemic resistance controls bacterial wilt of tomato. Pedosphere 27 1135–1146

    CAS  Google Scholar 

  • Liu CW and Murray JD 2016 The role of flavonoids in nodulation host-range specificity: an update. Plants 5 33

    CAS  PubMed Central  Google Scholar 

  • Liu H and Brettell LE 2019 Plant defense by VOC-induced microbial priming. Trends Plant Sci. 24 187–189

    CAS  PubMed  Google Scholar 

  • Liu H, Brettell LE, Qiu Z and Singh BK 2020 Microbiome-mediated stress resistance in plants. Trends Plant Sci. 258 733–743

    Google Scholar 

  • Liu K, McInroy JA, Hu CH and Kloepper JW 2018 Mixtures of plant-growth-promoting rhizobacteria enhance biological control of multiple plant diseases and plant-growth promotion in the presence of pathogens. Plant Dis. 102 67–72

    PubMed  Google Scholar 

  • Lorito M and Woo SL 2015 Trichoderma: a multi-purpose tool for integrated pest management; in Principles of Plant-Microbe Interactions (Springer) pp 345–353

  • Lu H, Zou WX, Meng JC, Hu J and Tan RX 2000 New bioactive metabolites produced by Colletotrichum sp. an endophytic fungus in Artemisia annua. Plant Sci. 151 67–73

    CAS  Google Scholar 

  • Lucas JA, García-Cristobal J, Bonilla A, Ramos B and Gutierrez-Manero J 2014 Beneficial rhizobacteria from rice rhizosphere confers high protection against biotic and abiotic stress inducing systemic resistance in rice seedlings. Plant Physiol. Biochem. 82 44–53

    CAS  PubMed  Google Scholar 

  • Lyu D, Backer R, Subramanian S and Smith DL 2020 Phytomicrobiome coordination signals hold potential for climate change-resilient agriculture. Front. Plant Sci. 11 634

    PubMed  PubMed Central  Google Scholar 

  • Ma Z, Hua GKH, Ongena M and Höfte M 2016 Role of phenazines and cyclic lipopeptides produced by pseudomonas sp CMR12a in induced systemic resistance on rice and bean. Environ. Microbiol. Rep. 8 896–904

    PubMed  Google Scholar 

  • Martin F, Kohler A, Murat C, Veneault-Fourrey C and Hibbett DS 2016 Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 14 760–773

    CAS  PubMed  Google Scholar 

  • Maymon M, Hidalgo PM, Tran SS, et al. 2015 Mining the phytomicrobiome to understand how bacterial coinoculations enhance plant growth. Front. Plant Sci. 6 784

    PubMed  PubMed Central  Google Scholar 

  • Mendes R, Kruijt M, de Bruijn I, et al. 2011 Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 332 1097–1100

    CAS  PubMed  Google Scholar 

  • Mishra RPN, Singh RK, Jaiswal HK, Kumar V and Maurya S 2006 Rhizobium-mediated induction of phenolics and plant growth promotion in rice Oryza sativa L. Currt Microbiol. 52 383–389

    CAS  Google Scholar 

  • Molitor A, Zajic D, Voll L, et al. 2011 Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica mediated systemic induced resistance to powdery mildew. Mol. Plant Microbe Interact. 241427–1439

  • Munhoz LD, Fonteque JP, Santos IMO, et al. 2017 Control of bacterial stem rot on tomato by extracellular bioactive compounds produced by Pseudomonas aeruginosa LV strain. Cogent Food Agric. 3 1282592

    Google Scholar 

  • Morel M and Castro-Sowinski S 2013 The complex molecular signaling network in microbe–plant interaction; in Plant Microbe Symbiosis Fundamentals and Advances (Springer) pp 169–199

  • Nadeem SM, Naveed M, Zahir ZA and Asghar HN 2013 Plant-Microbe Interactions or Sustainable Agriculture Fundamentals and Recent Advances; in Plant Microbe Symbiosis Fundamentals and Advances (Springer) pp 51–103

  • Nagy Z, Katay G, Gullner G and Adam A 2016 Evaluation of TMV lesion formation and timing of signal transduction during induction of systemic acquired resistance SAR in tobacco with a computer-assisted method; in Abiotic and Biotic Stress in Plants-Recent Advances and Future Perspectives (InTech)

  • Narayan OP, Verma N, Singh AK, Oelmüller R, Kumar M, Prasad D, Kapoor R, Dua M and Johri AK 2017 Antioxidant enzymes in chickpea colonized by Piriformospora indica participate in defense against the pathogen Botrytis cinereal. Sci. Rep. 7 13553

    PubMed  PubMed Central  Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB and Swarup S 2003 Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol. 132 146–153

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nawrocka J, Małolepsza U, Szymczak K and Szczech M 2018 Involvement of metabolic components, volatile compounds, PR proteins, and mechanical strengthening in multilayer protection of cucumber plants against Rhizoctonia solani activated by Trichoderma atroviride TRS25. Protoplasma 255 359–373

    CAS  PubMed  Google Scholar 

  • Niu D, Wang X, Wang Y, Song X, Wang XJ, Guo J and Zhao H 2016 Bacillus cereus AR156 activates PAMP-triggered immunity and induces a systemic acquired resistance through a NPR1-and SA-dependent signalling pathway. Biochem. Biophys. Res. Comm. 469 120–125

    CAS  PubMed  Google Scholar 

  • Oldroyd GE 2013 Speak friend and Enter Signalling systems that promote beneficial symbiotic associations in plants. Nat. Rev. Microbiol. 11 252–263

    CAS  PubMed  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS and Downie JA 2010 The rules of engagement in the legume rhizobial symbiosis. Annu. Rev. of Genet. 45 119–144

    Google Scholar 

  • Okon Y and Itzigsohn R 1995 The development of Azospirillum as a commercial inoculant for improving crop yields. Biotechnol. Adv. 13 415–424

    CAS  PubMed  Google Scholar 

  • Partida-Martinez LP and Hertweck C 2005 Pathogenic fungus harbours endosymbiotic bacteria for toxin production. Nature 437 884–888

    CAS  PubMed  Google Scholar 

  • Peiffer JA, Spor A, Koren O, Jin Z, Tringe SJ, Dangl JL, Buckler ES and Ley RE 2013 Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Nat. Acad. Sci. USA 110 6548–6553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips DA, Joseph CM, Yang GP, Martínez-Romero E, Sanborn JR and Volpin H 1999 Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc. Nat. Acad. Sci. USA 96 12275–12280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ 1998 A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell. 10 1571–1580

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pineda A, Kaplan I and Bezemer TM 2017 Steering soil microbiomes to suppress above ground insect pests. Trends Plant Sci. 22 770–778

    CAS  PubMed  Google Scholar 

  • Ping L and Boland W 2004 Signals from the underground bacterial volatiles promote growth in Arabidopsis. Trends Plant Sci. 9 263–266

    CAS  PubMed  Google Scholar 

  • Planchamp C, Glauser G and Mauch-Mani B 2015 Root inoculation with Pseudomonas putida KT2440 induces transcriptional and metabolic changes and systemic resistance in maize plants. Front. Plant Sci. 5 1–10

    Google Scholar 

  • Poustini K, Mabood F and Smith DL 2007 Preincubation of Rhizobium leguminosarum bv phaseoli with jasmonate and genistein signal molecules increases bean Phaseolus vulgaris L nodulation nitrogen fixation and biomass production. J. Agric. Sci. Technol. 9 107–117

    Google Scholar 

  • Raaijmakers JM and Weller DM 1998 Natural plant protection by 24-diacetylphloroglucinol producing Pseudomonas spp. in take-all decline soils. Mol. Plant Microbe Interact. 11 144–152

    CAS  Google Scholar 

  • Rais A, Jabeen Z, Shair F, Hafeez, FY and Hassan MN 2017 Bacillus spp., a bio-control agent enhances the activity of antioxidant defense enzymes in rice against Pyricularia oryzae. PLoS ONE 12 e0187412

  • Rengel Z 2002 Breeding for better symbiosis. Plant Soil. 245 147–162

    CAS  Google Scholar 

  • Rivera Varas VV, Freeman TA, Gusmestad NC and Secor GA 2007 Mycoparasitism of Helminthosporium solani by Acremonium strictum. Phytopathology. 97 1331–1337

    PubMed  Google Scholar 

  • Ross AF 1961 Systemic acquired resistance induced by localized virus infections in plants. Virology 14 340–358

    CAS  PubMed  Google Scholar 

  • Rovira AD and Harris JR 1961 Plant root excretions in relation to the rhizosphere effect. Plant Soil 14 199–214

    CAS  Google Scholar 

  • Rouphael YP, Franken C, Schneider D, Schwarz M, Giovannetti M, Agnolucci S, et al. 2015 Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 196 91–108

    Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW and Bais HP 2008 Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol. 148 1547–1556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY and Hunt MD 1996 Systemic acquired resistance. Plant Cell. 8 1809–1819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saravanakumar K, Li Y, Yu C, Wang Q, Wang M, Sun JN and Gao JX 2017 Effect of Trichoderma harzianum on maize rhizosphere microbiome and biocontrol of Fusarium Stalk rot. Sci. Rep. 7 1771

    PubMed  PubMed Central  Google Scholar 

  • Selosse MA and Le Tacon F 1998 The land flora a phototroph-fungus partnership? Trends Ecol. Evol. 13 15–20

    CAS  PubMed  Google Scholar 

  • Seneviratne G, Ismail J, Bandara WMMS and Weerasekara MLMAW 2008 Fungal-bacterial biofilms their development for novel biotechnological applications. World J. Microbiol Biotechnol. 24 739–743

    CAS  Google Scholar 

  • Shah J 2009 Plants under attack systemic signals in defence. Curr. Opin. Plant Biol. 12 459–464

    CAS  PubMed  Google Scholar 

  • Shameer S and Prasad T 2018 Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regul. 1–13

  • Sharma R, Gal L, Garmyn D, Bisaria VS, Sharma S and Piveteau P 2020 Evidence of biocontrol activity of bioinoculants against a human pathogen Listeria monocytogenes. Front Microbiol. 11 350

    PubMed  PubMed Central  Google Scholar 

  • Sharma CK, Vishnoi VK, Dubey RC and Maheshwari DK 2018 A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere. 5 71–75

    Google Scholar 

  • Shilev S 2013 Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants; in Plant Microbe Symbiosis: Fundamentals and Advances (Springer) pp 147–50

  • Siddiqui MF, Sakinah M, Singh L and Zularisam A 2012 Targeting N-acyl-homoserine-lactones to mitigate membrane biofouling based on quorum sensing using a biofouling reducer. J. Biotechnol. 161 190–197

    CAS  PubMed  Google Scholar 

  • Sierra S, Rodelas B, Martínez-Toledo MV, Pozo C and González-López J 1999 Production of B-group vitamins by two Rhizobium strains in chemically defined media. J. Appl. Microbiol. 86 851–858

    CAS  Google Scholar 

  • Singh M, Awasthi A, Soni SK, Singh R, Verma RK and Kalra A 2015 Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth. Sci. Rep. 5 15500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh BK and Trivedi P 2017 Microbiome and the future for food and nutrients security. Microb. Biotechnol. 10 50–53

    PubMed  PubMed Central  Google Scholar 

  • Smith CJ 1996 Accumulation of phytoalexins defense mechanism and stimulus response system. New Phytol. 32 1–45

    CAS  Google Scholar 

  • Smith KP, Handelsman J and Goodman RM 1999 Genetic basis in plants for interactions with disease-suppressive bacteria. Proc. Nat. Acad. Sci. USA 969 4786–4790

    Google Scholar 

  • Smith DL, Praslickova D and Ilangumaran G 2015a Inter-organismal signalling and management of the phytomicrobiome. Front. Plant Sci. 6 722

    PubMed  PubMed Central  Google Scholar 

  • Smith DL, Subramanian S, Lamont JR and Bywater-Ekegärd M 2015b Signalling in the phytomicrobiome breadth and potential. Front. Plant Sci. 6 709

    PubMed  PubMed Central  Google Scholar 

  • Smith DL, Gravel V and Yergeau E 2017 Editorial: Signalling in the Phytomicrobiome. Front. Plant Sci. 8 611

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Chen D, Lu K, Sun Z and Zeng R 2015 Enhanced tomato disease resistance primed by arbuscular mycorrhizal fungus. Front. Plant Sci. 6 786

    PubMed  PubMed Central  Google Scholar 

  • Solanki S, Ameen G, Sanyal D, Jain S, Elakhdar A, Lall S, Chittem K, Brueggeman Kumar A and Brueggeman R 2020 Friends and foes phyto-microbial interactions; in Phyto-Microbiome in Stress Regulation Environmental and Microbial Biotechnology (Springer) pp 81–98

  • Sorensen J, Nicolaisen MH, Ron E and Simonet P 2009 Molecular tools in rhizosphere microbiology-from single-cell to whole-community analysis. Plant Soil. 321 483–512

    Google Scholar 

  • Sticher L, Mauch-Mani B and Metraux JP 1997 Systemic acquired resistance. Annu. Rev. Phytopathol. 35 235–270

    CAS  PubMed  Google Scholar 

  • Stringlis IA, Yu K, Feussner K, Jonge R, et al. 2018 MYB72-dependent coumarin exudation shapes root microbiome assembly to promote plant health. Proc. Nat. Acad. Sci. USA 115 5213–5222

    Google Scholar 

  • Subramaniam S and Smith DL 2015 Bacteriocins from the rhizosphere microbiome – from an agriculture perspective. Front. Plant Sci. 6 909

    Google Scholar 

  • Su F, Villaume S, Rabenoelina F, Crouzet J, Clément C, Vaillant-Gaveau N and Dhondt-Cordelier S 2017 Different Arabidopsis thaliana photosynthetic and defense responses to hemibiotrophic pathogen induced by local or distal inoculation of Burkholderia phytofirmans. Photosynth. Res. 134 201–214

    CAS  PubMed  Google Scholar 

  • Sun C, Shao Y, Vahabi K, Lu J, Bhattacharya S, Dong S, Yeh KW, Sherameti I, Lo B, Baldwin I and Oelmuller R 2014 The beneficial fungus Piriformospora indica protects Arabidopsis from Verticillium dahlia infection by down regulation plant defense responses. BMC Plant Biol. 14 1–16

    Google Scholar 

  • Tonelli ML and Fabra A 2014 The biocontrol agent Bacillus sp. CHEP5 primes the defense response against Cercospora sojina. World J. Microbiol. Biotechnol. 30 1–7

    Google Scholar 

  • Tonelli ML, Magallanes-Noguera C and Fabra A 2017 Symbiotic performance and induction of systemic resistance against Cercospora sojina in soybean plants co-inoculated with Bacillus sp. CHEP5 and Bradyrhizobium japonicum E109. Arch. Microbiol. 199 1283–1291

    CAS  PubMed  Google Scholar 

  • Tsolakidou MD, Stringlis I, Sleziak NF, Papageorgiou S, Tsalakou A and Pantelides I 2019 Rhizosphere-enriched microbes as a pool to design synthetic communities for reproducible beneficial outputs. FEMS Microbiol. Ecol. 95 10

    Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A and Poole PS 2013a Comparative meta transcriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J. 7 2248–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turner TR, James EK and Poole PS 2013b The plant microbiome. Genome Biol. 14 209

    PubMed  PubMed Central  Google Scholar 

  • Uroz S, Courty PE and Oger P 2019 Plant symbionts are engineers of the plant-associated microbiome. Trends Plant Sci. 24 905–916

    CAS  PubMed  Google Scholar 

  • Van Loon LC, Bakker PA and Pieterse CM 1998 Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36 453–483

    PubMed  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A and Dufresne A 2015 The importance of the microbiome of the plant holobiont. New Phytol. 206 1196–1206

    PubMed  Google Scholar 

  • Velivelli SLS, Lojan P, Cranenbrouck S, de Boulois HD, Suarez JP, Declerck S, Franco J, Prestwich BD 2015 The induction of ethylene response factor 3 (ERF3) in potato as a result of co-inoculation with Pseudomonas sp. R41805 and Rhizophagus irregularis MUCL 41833-a possible role in plant defense. Plant Signal. Behav 10 e988076

  • Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL and Mitchell-Olds T 2016 Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7 12151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, et al. 2005 The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance disease resistance and higher yield. Proc. Nat. Acad. Sci. USA 102 13386–13391

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weller DM, Mavrodi DV, Van Pelt JA, Pieterse CM, Van Loon LC and Bakker PA 2012 Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv tomato by 24-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102 403–412

    CAS  PubMed  Google Scholar 

  • Wissuwa M, Mazzola M and Picard C 2009 Novel approaches in plant breeding for rhizosphere-related traits. Plant Soil. 321 409–430

    CAS  Google Scholar 

  • Woo SL, Ruocco M, Vinale F, et al. 2014 Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8 71–126

    Google Scholar 

  • Woo SL and Pepe O 2018 Microbial consortia: promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 9 1801

    PubMed  PubMed Central  Google Scholar 

  • Wu L, Chen H, Curtis C and Fu ZQ 2014 Go in for the kill. Virulence. 5 710–721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xin XF and He SY 2013 Pseudomonas syringae pv tomato DC3000 a model pathogen for probing disease susceptibility and hormone signalling in plants. Annu. Rev. Phytopathol. 51 473–498

    CAS  PubMed  Google Scholar 

  • Yanagita T and Foster JW 1956 A bacterial riboflavin hydrolase. J. Biol. Chem. 221 593–607

    CAS  PubMed  Google Scholar 

  • Yasmin S, Hafeez FY, Mirza MS, Rasul M, Arshad HMI, Zubair M and Iqbal M 2017 Biocontrol of bacterial leaf blight of rice and profiling of secondary metabolites produced by rhizospheric Pseudomonas aeruginosa BRp3. Front. Microbiol. 8 1985

    Google Scholar 

  • Yergeau E, Bell TH, Champagne J, et al. 2015 Transplanting soil microbiomes leads to lasting effects on willow growth but not on the rhizosphere microbiome. Front. Microbiol. 6 1436

    PubMed  PubMed Central  Google Scholar 

  • Zhang N, Wang D, Liu Y, Li S, Shen Q and Zhang R 2014 Effects of different plant root exudates and their organic acid components on chemotaxis biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant Soil. 374 689–700

    CAS  Google Scholar 

Download references

Acknowledgements

AR acknowledges financial assistance received from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (file no- ECRA/00563/2017), during conceptualisation and writing of review. DK acknowledges SERB (Grant No‐ EEQ/2016/000487), India for providing financial support to the laboratory and Centre of Advanced study in Botany, Department of Botany, Institute of Science and Institute of Eminence (IoE), Banaras Hindu University for providing necessary facilities and infrastructural support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana Rustagi.

Additional information

Communicated by Ashis Kumar Nandi.

Corresponding editor: Ashis Kumar Nandi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Raina, M., Kumar, D. et al. Harnessing phytomicrobiome signals for phytopathogenic stress management. J Biosci 47, 6 (2022). https://doi.org/10.1007/s12038-021-00240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-021-00240-9

Keywords

Navigation