Skip to main content
Log in

Functional analyses of Populus euphratica brassinosteroid biosynthesis enzyme genes DWF4 (PeDWF4) and CPD (PeCPD) in the regulation of growth and development of Arabidopsis thaliana

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

DWF4 and CPD are key brassinosteroids (BRs) biosynthesis enzyme genes. To explore the function of Populus euphratica DWF4 (PeDWF4) and CPD (PeCPD), Arabidopsis thaliana transgenic lines (TLs) expressing PeDWF4, PeCPD or PeDWF4 plus PeCPD, namely PeDWF4-TL, PeCPD-TL and PeCP/DW-TL, were characterized. Compared with wild type (WT), the changes of both PeDWF4-TL and PeCPD-TL in plant heights, silique and hypocotyls lengths and seed yields were similar, but in bolting time and stem diameters, they were opposite. PeCP/DW-TL was more in plant heights and the lengths of primary root, silique, and fruit stalk, but less in silique numbers and seed yields than either PeDWF4-TL or PeCPD-TL. PeDWF4 and PeCPD specially expressed in PeDWF4-TL or PeCPD-TL, and the transcription level of PeDWF4 was higher than that of PeCPD. In PeCP/DW-TL, their expressions were all relatively reduced. Additionally, the expression of PeDWF4 and PeCPD differentially made the expression levels of AtDWF4, AtCPD, AtBR6OX2, AtFLC, AtTCP1 and AtGA5 change in the TLs. The total BRs contents were PeDWF4-TL > PeCP/DW-TL > WT > PeCPD-TL. These results imply that PeDWF4 is functionally not exactly the same as PeCPD and there may be a synergistic and antagonistic effects in physiology between both of them in the regulation of plant growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Asahina M, Tamaki Y, Sakamoto T, Shibata K, Nomura T and Yokota T 2014 Blue light-promoted rice leaf bending and unrolling are due to up-regulated brassinosteroid biosynthesis genes accompanied by accumulation of castasterone. Phytochemistry 104 21–29

    Article  CAS  PubMed  Google Scholar 

  • Aukerman MJ and Sakai H 2003 Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15 2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azpiroz R, Wu YW, LoCascio JC and Feldmann KA 1998 An Arabidopsis brassinosteroid-dependent mutant is blocked in cell elongation. Plant Cell 10 219–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancos S, Nomura T, Sato T, Molnar G, Bishop GJ, Koncz C, Yokota T, Nagy F, et al. 2002 Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol. 130 504–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancos S, Szatmari AM, Castle J, Kozma-Bognar L, Shibata K, Yokota T, Bishop GJ, Nagy F, et al. 2006 Diurnal regulation of the brassinosteroid-biosynthetic CPD gene in arabidopsis. Plant Physiol. 141 299–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop G, Nomura T, Yokota T, Montoya T, Castle J, Harrison K, Kushiro T, Kamiya Y, et al. 2006 Dwarfism and cytochrome P450-mediated C-6 oxidation of plant steroid hormones. Biochem. Soc. Trans. 34 1199–1201

    Article  CAS  PubMed  Google Scholar 

  • Bouquin T, Meier C, Foster R, Nielsen ME and Mundy J 2001 Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol. 127 450–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choe SW, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A and Feldmann KA 1998 The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22 alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10 231–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S and Feldmann KA 2001 Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J. 26 573–582

    Article  CAS  PubMed  Google Scholar 

  • Chory J, Nagpal P and Peto CA 1991 Phenotypic and genetic-analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3 445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung Y and Choe S 2013 The regulation of brassinosteroid biosynthesis in Arabidopsis. Crit. Rev. Plant Sci. 32 396–410

    Article  Google Scholar 

  • Cubas P, Coen E and Zapater JMM 2001 Ancient asymmetries in the evolution of flowers. Curr. Biol. 11 1050–1052

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F and Davis SJ 2007 Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Development 134 2841–2850

    Article  CAS  PubMed  Google Scholar 

  • Domagalska MA, Sarnowska E, Nagy F, and Davis SJ 2010 Genetic analyses of interactions among Gibberellin, Abscisic Acid, and Brassinosteroids in the control of flowering time in Arabidopsis thaliana. PLOS One 5 e14012

  • Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M and Chory J 2002 Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162 1445–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujioka S and Yokota T 2003 Biosynthesis and metabolism of brassinosteroids. Annu. Rev. Plant Biol. 54 137–164

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Takatsuto S and Yoshida S 2002 An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol. 130 930–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita S, Ohnishi T, Watanabe B, Yokota T, Takatsuto S, Fujioka S, Yoshida S, Sakata K, et al. 2006 Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C-27, C-28 and C-29 sterols. Plant J. 45 765–774

    Article  CAS  PubMed  Google Scholar 

  • Gaudin V, Libault M, Pouteau S, Juul T, Zhao GC, Lefebvre D and Grandjean O 2001 Mutations in LIKE HETEROCHROMATIN PROTEIN 1 affect flowering time and plant architecture in Arabidopsis. Development 128 4847–4858

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, et al. 1979 Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281 216–217

  • Guo ZX, Fujioka S, Blancaflor EB, Miao S, Gou XP and Li J 2010 TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell. 22 1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H and Huijser P 2000 Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J. 21 351–360

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, et al. 2003 A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15 2900–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, et al. 2005 The rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell. 17 2243–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim GT, Tsukaya H and Uchimiya H 1998 The ROTUNDIFOLIA3 gene of Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leaf cells. Genes Dev. 12 2381–2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim GT, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S and Tsukaya H 2005a CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J. 41 710–721

    Article  CAS  PubMed  Google Scholar 

  • Kim TW, Hwang JY, Kim YS, Joo SH, Chang SC, Lee JS, Takatsuto S and Kim SK 2005b Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17 2397–2412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, et al. 2006 The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol. 140 548–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li JM and Chory J 1997 A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell. 90 929–938

    Article  CAS  PubMed  Google Scholar 

  • Li QF, Wang CM, Jiang L, Li S, Sun SSM and He JX 2012 An Interaction between BZR1 and DELLAs mediates direct signaling crosstalk between brassinosteroids and gibberellins in Arabidopsis. Sci. Signal. 5. doi:10.1126/scisignal.2002908

  • Lichtenthaler HK and Wellburn AR 1983 Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 11 591–592

    Article  CAS  Google Scholar 

  • Livak KJ and Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25 402–408

    Article  CAS  PubMed  Google Scholar 

  • Markovic-Housley Z, Degano M, Lamba D, von Roepenack-Lahaye E, Clemens S, Susani M, Ferreira F, Scheiner O, et al. 2003 Crystal structure of a hypoallergenic isoform of the major birch pollen allergen Bet v 1 and its likely biological function as a plant steroid carrier. J. Mol. Biol. 325 123–133

    Article  CAS  PubMed  Google Scholar 

  • Mathur J, Molnar G, Fujioka S, Takatsuto S, Sakurai A, Yokota T, Adam G, Voigt B, et al. 1998 Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J. 14 593–602

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD and Amasino RM 1999 FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11 949–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouchel CF, Osmont KS and Hardtke CS 2006 BRX mediates feedback between brassinosteroid levels and auxin signalling in root growth. Nature 443 458–461

    Article  CAS  PubMed  Google Scholar 

  • Murashige T and Skoog F 1962 A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15 473–497

    Article  CAS  Google Scholar 

  • Nakamura A, Fujioka S, Sunohara H, Kamiya N, Hong Z, Inukai Y, Miura K, Takatsuto S, et al. 2006 The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol. 140 580–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura T, Sato T, Bishop GJ, Kamiya Y, Takatsuto S and Yokota T 2001 Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry 57 171–178

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Szatmari AM, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, et al. 2006 C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell. 18 3275–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, et al. 2012 CYP90A1/CPD, a Brassinosteroid Biosynthetic Cytochrome P450 of Arabidopsis, Catalyzes C-3 Oxidation. J. Biol. Chem. 287 31551–31560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T and Matsuoka M 2006 Characterization of CONSTITUTIVE PHOTOMORPHOGENESIS AND DWARFISM homologs in rice (Oryza sativa L.). J. Plant Growth Regul. 25 245–251

    Article  CAS  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ and Dennis ES 1999 The FLF MADS box gene: A repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11 445–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ZY, Rao YC, Xu J, Hu SK, Fang YX, Yu HP, Pan JJ, Liu RF, et al. 2015 Characterization and cloning of SMALL GRAIN 4, a novel DWARF11 allele that affects brassinosteroid biosynthesis in rice. Sci. Bull. 60 905–915

    Article  CAS  Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, et al. 2001 Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol. 126 770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S and Yoshida S 2003 Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Cell Physiol. 44 S69–S69

    Google Scholar 

  • Symons GM and Reid JB 2004 Brassinosteroids do not undergo long-distance transport in pea. Implications for the regulation of endogenous brassinosteroid levels. Plant Physiol. 135 2196–2206

  • Szekeres M, Nemeth K, KonczKalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, et al. 1996 Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85 171–182

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Gasch A, Nishizawa N and Chua NH 1995 The Diminuto Gene of Arabidopsis Is Involved in Regulating Cell Elongation. Genes Dev. 9 97–107

    Article  CAS  PubMed  Google Scholar 

  • Talon M, Koornneef M and Zeevaart JAD 1990 Endogenous gibberellins in Arabidopsis thaliana and possible steps blocked in the biosynthetic pathways of the semidwarf ga4 and ga5 mutants. Proc. Natl. Acad. Sci. USA 87 7983–7987

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, et al. 2005 A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17 776–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Asami T, Yoshida S, Nakamura Y, Matsuo T and Okamoto S 2005 Brassinosteroid homeostasis is ensured by signal-dependent feedback expressions of its metabolic genes in Arabidopsis. Plant Cell Physiol. 46 S216–S216

    Google Scholar 

  • Tong HN, Xiao YH, Liu DP, Gao SP, Liu LC, Yin YH, Jin Y, Qian Q, et al. 2014 Brassinosteroid regulates cell elongation by modulating Gibberellin metabolism in Rice. Plant Cell 26 4376–4393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, et al. 2003 CYP72B1 inactivates brassinosteroid hormones: An intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol. 133 1643–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang HC, Torres QI, et al. 2005 BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J. 42 23–34

    Article  CAS  PubMed  Google Scholar 

  • Wu HJ 2012 Cloning and function analysis of Populus euphratica brassinosteroids biosynthase gene CPD (PeCPD). PhD thesis, Lanzhou University, Lanzhou

  • Wu HJ, Si JP, Xu DR, Lian GS and Wang XY 2014 Heterologous expression of Populus euphratica CPD (PeCPD) can repair the phenotype abnormity caused by inactivated AtCPD through restoring brassinosteroids biosynthesis in Arabidopsis. Acta Physiol. Plant 36 3123–3135

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, et al. 2000 Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12 1591–1605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Natural Science Foundation of China (No. 30971549 and No. 31071178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinyu Wang.

Additional information

[Si J, Sun Y, Wang L, Qin Y, Wang C and Wang X 2016 Functional analyses of Populus euphratica brassinosteroid biosynthesis enzyme genes DWF4 (PeDWF4) and CPD (PeCPD) in the regulation of growth and development of Arabidopsis thaliana. J. Biosci.]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Si, J., Sun, Y., Wang, L. et al. Functional analyses of Populus euphratica brassinosteroid biosynthesis enzyme genes DWF4 (PeDWF4) and CPD (PeCPD) in the regulation of growth and development of Arabidopsis thaliana . J Biosci 41, 727–742 (2016). https://doi.org/10.1007/s12038-016-9635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9635-8

Keywords

Navigation