Skip to main content

Advertisement

Log in

Identification and validation of a virus-inducible ta-siRNA-generating TAS4 locus in tomato

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Trans-acting small interfering RNAs (ta-siRNAs) are a class of endogenous small RNA, associated with post-transcriptional gene silencing. Their biogenesis requires an initial microRNA (miRNA)-mediated cleavage of precursor RNA. Around 20 different ta-siRNA-producing loci (TASs), whose sequences are conserved, are reported in plants. In tomato, two TAS gene families have been identified, which are found to target auxin response factor gene and bacterial spot disease resistance protein Bs4 gene. Using high-throughput computational and experimental approach, we identified a new locus-producing ta-siRNA in tomato. We have also identified the putative miRNA regulating the production of ta-siRNA from this locus. The ta-siRNAs generated from TAS4 were up-regulated upon infection with a DNA virus. The potential targets of ta-siRNAs were predicted to be variety of proteins including MYB transcription factors and cell cycle regulators for some of the ta-siRNAs produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Allen E and Howell MD 2010 miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin. Cell Dev. Biol. 21 798–804

    Article  CAS  PubMed  Google Scholar 

  • Ahmed KP, Bendahmane M, Matzeit V, Accotto GP, Crespi S and Gronenborn B 1991 Tomato yellow leaf curl virus from Sardinia is a whitefly transmitted monopartite geminivirus. Nucleic Acids Res. 19 6763–6769

    Article  Google Scholar 

  • Allen E, Xie Z, Gustafson AM and Carrington JC 2005 MicroRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121 207–221

    Article  CAS  PubMed  Google Scholar 

  • Ascencio-Ibañez JT, Sozzani R, Lee T-J, Chu T-M, Wolfinger RD, Cellab R and Hanley-Bowdoin L 2008 Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol. 148 436–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Axtell M, Jan C, Rajagopalan R and Bartel DP 2006 A two-hit trigger for siRNA biogenesis in plants. Cell 127 565–577

    Article  CAS  PubMed  Google Scholar 

  • Borah BK and Dasgupta I 2012 Begomovirus research in India: a critical appraisal and the way ahead. J. Biosci. 37 791–806

    Article  CAS  PubMed  Google Scholar 

  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL and Carrington JC 2006 Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 16 939–944

    Article  CAS  PubMed  Google Scholar 

  • Fei Z, Joung JG, Tang X, Zheng Y, Huang M, Lee JM, McQuinn R, Tieman DM, et al. 2011 Tomato Functional Genomics Database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Res. 39 1156–1163

    Article  Google Scholar 

  • Garcia D, Collier SA, Byrne ME and Martienssen RA 2006 Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr. Biol. 16 933–938

    Article  CAS  PubMed  Google Scholar 

  • Gasciolli V, Mallory AC, Bartel DP and Vaucheret H 2005 Partially redundant functions of Arabidopsis DICeR-like enzymes and a role for DCL4 in producing trans-acting siRNAs. Curr. Biol. 15 1494–1500

    Article  CAS  PubMed  Google Scholar 

  • Griffiths-Jones S, Saini HK, van Dongen S and Enright AJ 2008 miRBase: tools for microRNA genomics. Nucleic Acids Res. 36 154–158

    Article  Google Scholar 

  • Guan X, Pang M, Nah G, Shi X, Ye W, Stelly DM and Chen ZJ 2014 miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat. Commun. 5 3050

    Article  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Settlage SB, Orozco BM, Nagar S and Robertson D 1999 Geminiviruses: models for plant DNA replication, transcription, and cell cycle regulation. Crit. Rev. Plant Sci. 18 71–106

    Article  CAS  Google Scholar 

  • Heisel SE, Zhang Y, Allen E, Guo L, Reynolds TL and Yang X 2008 Characterization of unique small RNA populations from rice grain. PLoS One 3 2871

    Article  Google Scholar 

  • Howell MD, Fahlgren N, Chapman EJ, Cumbie JS, Sullivan CM, Givan SA, Kasschau KD and Carrington JC 2007 Genome-wide analysis of the RNA-DEPENDENT RNA POLYMER- ASE6/DICER-LIKE4 pathway in Arabidopsis reveals dependency on miRNA- and tasiRNA-directed targeting. Plant Cell. 19 926–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsieh LC, Lin SI, Shih AC, Chen JW, Lin WY and Tseng CY 2009 Uncovering small RNA-mediated responses to phosphate-deficiency in Arabidopsis by deep sequencing. Plant Physiol. 151 2120–32

    Article  PubMed  PubMed Central  Google Scholar 

  • Jackel JN, Buchmann RC, Singhal U and Bisaro DM 2014 Analysis of geminivirus AL2 and L2 proteins reveals a novel AL2 silencing suppressor activity. J. Virol. 14 JVI.02625

    Google Scholar 

  • Johnson C, Kasprzewska A, Tennessen K, Fernandes J, Nan GL and Walbot V 2009 Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res. 19 1429–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ketting RF 2011 The many faces of RNAi. Dev. Cell 20 148–161

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M and Salzberg SL 2009 Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10 25

    Article  Google Scholar 

  • Li F, Orban R and Baker B 2012 SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. Plant J. 70 891–901

    Article  CAS  PubMed  Google Scholar 

  • Lin JS, Lin CC, Lin HH, Chen YC and Jeng ST 2012a MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol. 196 427–440

    Article  CAS  PubMed  Google Scholar 

  • Lorenz R, Bernhart SH, Honer Z, Siederdissen C, Tafer H, Flamm C, Stadler PF and Hofacker IL 2011 ViennaRNA package 2.0; Algorithm. Mol. Biol. 6 26

    Google Scholar 

  • Peragine A, Yoshikawa M, Wu G, Albrecht HL and Poethig RS 2004 SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18 2368–2379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pradhan B, Naqvi AR, Saraf S, Mukherjee SK and Dey N 2015 Prediction and characterization of Tomato leaf curl New Delhi virus (ToLCNDV) responsive novel microRNAs in Solanumlycopersicum. Virus Res. 195 183–195

    Article  CAS  PubMed  Google Scholar 

  • Pratap D, Kashikar AR and Mukherjee SK 2011 Molecular characterization and infectivity of a Tomato leaf curl New Delhi virus variant associated with newly emerging yellow mosaic disease of eggplant in India. Virol. J. 8 305

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajagopalan R, Vaucheret H, Trejo J and Bartel DP 2006 A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev. 20 3407–3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sahu PP, Sharma N, Puranik S and Prasad M 2014 Post-transcriptional and epigenetic arms of RNA silencing: a defense machinery of naturally tolerant tomato plant against tomato leaf curl New Delhi virus. Plant Mol. Biol. Report 32 1015–1029

    Article  CAS  Google Scholar 

  • Singh A, Taneja J, Dasgupta I and Mukherjee SK 2014 Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol. Plant Pathol doi:10.1111/mpp.12229

  • Sohrab SS, Mandal B, Pant RP and Varma A 2003 First report of the association of tomato leaf curl virus-New Delhi with yellow mosaic disease of Luffacylindrical in India. Plant Dis. 87 1148

    Article  Google Scholar 

  • Talmor-Neiman M, Stav R, Klipcan L, Buxdorf K, Baulcombe DC and Arazi T 2006 Identification of trans-acting siRNAs in moss and an RNA-dependent RNA polymerase required for their biogenesis. Plant J. 48 511–21

    Article  CAS  PubMed  Google Scholar 

  • Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory AC, Hilbert JL, Bartel DP, et al. 2004 Endogenous trans- acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell. 16 69–79

    Article  CAS  PubMed  Google Scholar 

  • Williams L, Carles CC, Osmont KS and Fletcher JC 2005 A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proc. Natl. Acad. Sci. USA 102 9703–9708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia R, Zhu H, An YQ, Beers EP and Liu Z 2012 Apple miRNAs and tasiRNAs with novel regulatory networks. Genome Biol. 13 47

    Article  Google Scholar 

  • Xie Z, Allen E, Wilken A and Carrington JC 2005 DICER-LIKE 4 functions in trans-acting small interfering RNA biogenesis and vegetative phase change in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 102 12984–12989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yifhar T, Pekker I, Peled D, Friedlander G, Pistunov A, Sabban M, Wachsman G, Alvarez JP, et al. 2012 Failure of the tomato trans-acting short interfering RNA program to regulate AUXIN RESPONSE FACTOR3 and ARF4 underlies the wiry leaf syndrome. Plant Cell 24 3575–3589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshikawa M, Peragine A, Park M and Poethig RS 2005 A pathway for the biogenesis of trans -acting siRNAs in Arabidopsis. Genes Dev. 19 2164–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li G, Zhu S, Zhang S and Fang J 2013 tasiRNAdb: a database of ta-siRNA regulatory pathways. Bioinformatics 30 1045–1046

    Article  PubMed  Google Scholar 

  • Zhu QH, Spriggs A, Matthew L, Fan L, Kennedy G and Gubler F 2008 Adversesetof microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res. 18 1456–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo M, Taylor J M, Spriggs A, Zhang H, Wu X, Russell S, Koltunow A 2011 A genome-wide survey of imprinted genes in rice seeds reveals imprinting primarily occurs in the endosperm. PLoS Genet. 6 1002125–1002125

  • Lin JS, Lin CC, Lin HH, Chen YC and Jeng ST 2012b MicroR828 regulates lignin and H2O2 accumulation in sweet potato on wounding. New Phytol. 196 427–440

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

AS and SS are thankful to University Grants Commission, New Delhi, and Department of Biotechnology, India, respectively, for their research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Indranil Dasgupta or Sunil Kumar Mukherjee.

Additional information

Corresponding editor: Utpal Nath

[Singh A, Saraf S, Dasgupta I and Mukherjee SK 2016 Identification and validation of a virus-inducible ta-siRNA-generating TAS4 locus in tomato. J. Biosci.] DOI 10.1007/s12038-016-9590-4

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Saraf, S., Dasgupta, I. et al. Identification and validation of a virus-inducible ta-siRNA-generating TAS4 locus in tomato. J Biosci 41, 109–118 (2016). https://doi.org/10.1007/s12038-016-9590-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9590-4

Keywords

Navigation