Skip to main content
Log in

Post-transcriptional and Epigenetic Arms of RNA Silencing: A Defense Machinery of Naturally Tolerant Tomato Plant Against Tomato Leaf Curl New Delhi Virus

  • Original Paper
  • Published:
Plant Molecular Biology Reporter Aims and scope Submit manuscript

Abstract

Tomato leaf curl disease (ToLCD), caused by strains of Tomato leaf curl virus, is major constraint to tomato production globally. The present study was aimed to understand the mechanisms of ToLCD tolerance in a naturally tolerant tomato cultivar through post-transcriptional and DNA methylation-specific RNA silencing. We evaluated the distribution of virus-derived short-interfering RNAs (siRNAs) throughout the Tomato leaf curl New Delhi virus (ToLCNDV) genome along with DNA methylation patterns in intergenic (IR) and Rep (AC1) regions in two tomato cultivars differing in their ToLCNDV tolerance. The methylation pattern was correlated by expression analysis of key methyltransferases genes. In the tolerant cultivar, higher accumulation of viral IR-specific 24-nucleotides (nt) siRNA and AC1-specific 21-nt siRNA were found. Higher methylation levels were observed in various regions of IR. Additionally, AC1 region which facilitates binding of plant nuclear proteins was hypermethylated. DNA methylation in the key regulating region may control the expression of AC1, AC2, and AC3 genes. Components of RNA silencing and DNA methylation machinery were found to be differentially expressed in both the cultivar of tomato at 21 dpi. Thus, we infer that both viral DNA methylation and siRNA-mediated RNA degradation play an important role in conferring tolerance against Tomato leaf curl New Delhi virus. Due to the inability to achieve field resistance in transgenic tomato by deploying the viral genes, targeting the viral genomic regions through RNAi technology reported here could offer an alternate defense strategy for generating transgenics to prevent yield loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AC1:

Replication-associated protein

AGO:

Argonaute proteins

CMT3 :

Chromomethylase

DCL:

Dicer-like proteins

DRM1/2 :

Domain rearrangement methyltransferase 1/2

PTGS:

Post-transcriptional gene silencing

siRNAs:

Small interfering RNA

TGS:

Transcriptional gene silencing

ToLCNDV:

Tomato leaf curl New Delhi virus

References

  • Akbergenov R, Si-Ammour A, Blevins T, Amin I, Kutter C, Vanderschuren H, Zhang P, Gruissem W, Meins F Jr, Hohn T, Pooggin MM (2006) Molecular characterization of Geminivirus-derived small RNAs in different plant species. Nucleic Acids Res 34:462–471

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Araki S, Ito M, Soyano T, Nishihama R, Machida Y (2004) Mitotic cyclins stimulate the activity of c-myb-like factors for transactivation of G2/M phase-specific genes in tobacco. J Biol Chem 279:32979–32988

    Article  CAS  PubMed  Google Scholar 

  • Bender J (2004) DNA methylation and epigenetics. Annu Rev Plant Biol 55:41–68

    Article  CAS  PubMed  Google Scholar 

  • Bian XY, Rasheed MS, Seemanpillai M, Rezaian A (2006) Analysis of silencing escape of Tomato leaf curl virus: an evaluation of the role of DNA methylation. Mol Plant Microbe Interact 19:614–624

    Article  CAS  PubMed  Google Scholar 

  • Bisaro DM (2006) Silencing suppression by Geminivirus proteins. Virology 344:158–168

    Article  CAS  PubMed  Google Scholar 

  • Boykoa A, Kovalchuk I (2011) Genetic and epigenetic effects of plant–pathogen interactions: an evolutionary perspective. Mol Plant 4:1014–1023

    Article  Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  • Brough CL, Gardiner WE, Inamdar M, Zhang XY, Ehrlich M, Bisaro DM (1992) DNA methylation inhibits propagation of Tomato golden mosaic virus DNA in transfected protoplasts. Plant Mol Biol 18:703–712

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S (2008) Tomato leaf curl viruses from India (Geminiviridae). In: Mahy BWJ, Van Regenmortel MHV (eds) Encyclopedia of virology. Elsevier, Oxford, UK, pp 124–133

    Chapter  Google Scholar 

  • Chan SW, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351–360

    Article  CAS  PubMed  Google Scholar 

  • Chellappan P, Vanitharani R, Pita J, Fauquet CM (2004) Short interfering RNA accumulation correlates with host recovery in DNA virus-infected hosts, and gene silencing targets specific viral sequences. J Virol 78:7465–7477

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Csorba T, Pantaleo V, Burgyan J (2009) RNA silencing: an antiviral mechanism. Adv Virus Res 75:35–71

    Article  CAS  PubMed  Google Scholar 

  • Czosnek H, Laterrot H (1997) A worldwide survey of Tomato yellow leaf curl viruses. Arch Virol 142:1391–1406

    Article  CAS  PubMed  Google Scholar 

  • Eagle PA, Orozco BM, Hanley-Bowdoin L (1994) A DNA sequence required for Geminivirus replication also mediates transcriptional regulation. Plant Cell 6:1157–1170

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ermak G, Paszkowski U, Wohlmuth M, Scheid OM, Paszkowski J (1993) Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms. Nucleic Acids Res 21:3445–3450

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fontes EPB, Eagle PA, Sipe PS, Luckow VA, Hanley-Bowdoin L (1994a) Interaction between a Geminivirus replication protein and origin DNA is essential for viral replication. J Biol Chem 269:8459–8465

    CAS  PubMed  Google Scholar 

  • Fontes EPB, Luckow VA, Hanley-Bowdoin L (1992) A Geminivirus replication protein is a sequence-specific DNA binding protein. Plant Cell 4:597–608

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fontes EPB, Gladfelter HJ, Schaffer RL, Petty TD, Hanley-Bowdoin L (1994b) Geminivirus replication origins have a modular organization. Plant Cell 6:405–416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Foerster AM, Hetzl J, Müllner C, Mittelsten Scheid O (2010) Analysis of bisulfite sequencing data from plant DNA using CyMATE. Methods Mol Biol 631:13–22

    Article  CAS  PubMed  Google Scholar 

  • Frischmuth S, Frischmuth T, Jeske H (1991) Transcript mapping of Abutilon mosaic virus, a Geminivirus. Virology 185:596–604

    Article  CAS  PubMed  Google Scholar 

  • Gorbalenya AE, Koonin EV, Wolf YI (1990) A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262:145–148

    Article  CAS  PubMed  Google Scholar 

  • Grativol C, Hemerly AS, Ferreira PC (2012) Genetic and epigenetic regulation of stress responses in natural plant populations. Biochim Biophys Acta 1819:176–185

    Article  CAS  PubMed  Google Scholar 

  • Green SK, Kalloo G (1994) Leaf curl and yellowing viruses of pepper and tomato: an overview. Technical Bulletin No. 21. Asian Vegetable Research and Development Centre, Taiwan, p 51

    Google Scholar 

  • Hagen C, Rojas MR, Kon T, Gilbertson RL (2008) Recovery from Cucurbit leaf crumple virus (family Geminiviridae, genus Begomovirus) infection is an adaptive antiviral response associated with changes in viral small RNAs. Phytopathology 98:1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Hanley-Bowdoin L, Elmer JS, Rogers SG (1988) Transient expression of heterologous RNAs using tomato golden mosaic virus. Nucleic Acids Res 16:10511–10528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Holliday R, Pugh JE (1975) DNA modification mechanisms and gene activity during development. Science 187:226–232

    Article  CAS  PubMed  Google Scholar 

  • Kalloo G, Banerjee MK, Singh M, Kumar S (2000) Vegetable Varieties Technical Bulletin-3. IIVR, Varanasi, India

    Google Scholar 

  • Koonin EV, Ilyina TV (1992) Geminivirus replication proteins are related to prokaryotic plasmid rolling circle DNA replication initiator proteins. J Gen Virol 73:2763–2766

    Article  CAS  PubMed  Google Scholar 

  • Lin YS, Green MR (1988) Interaction of a common cellular transcription factor, ATF, with regulatory elements in both E1a- and cyclic AMP inducible promoters. Proc Natl Acad Sci U S A 85:3396–3400

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mullineaux PM, Rigden JE, Dry IB, Krake LR, Rezaian MA (1993) Mapping of the polycistronic RNAs of tomato leaf curl Geminivirus. Virology 193:414–423

    Article  CAS  PubMed  Google Scholar 

  • Muthamilarasan M, Prasad M (2013) Plant innate immunity: an updated insight into defence mechanism. J Biosci 38:433–449

    Article  CAS  PubMed  Google Scholar 

  • Nash TE, Dallas MB, Reyes MI, Buhrman GK, Ascencio-Ibañez JT, Hanley-Bowdoin L (2011) Functional analysis of a novel motif conserved across Geminivirus Rep proteins. J Virol 85:1182–1192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nawaz-ul-Rehman MS, Fauquet CM (2009) Evolution of geminiviruses and their satellites. FEBS Lett 583:1825–18321

    Google Scholar 

  • Paszkowski J, Whitham SA (2001) Gene silencing and DNA methylation processes. Curr Opin Plant Biol 4:123–129

    Article  CAS  PubMed  Google Scholar 

  • Pattanayak D, Solanke AU, Kumar AP (2013) Plant RNA interference pathways: diversity in function, similarity in action. Plant Mol Biol Rep 31:493–506

    Article  CAS  Google Scholar 

  • Porebski S, Bailey LG, Baurn BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Raja P, Sanville BC, Buchmann RC, Bisaro DM (2008) Viral genome methylation as an epigenetic defense against Geminiviruses. J Virol 82:8997–9007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raja P, Wolf JN, Bisaro DM (2010) RNA silencing directed against Geminiviruses: post-transcriptional and epigenetic components. Biochim Biophys Acta 1799:337–351

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Negrete EA, Carrillo-Tripp J, Rivera-Bustamante RF (2009) RNA silencing against Geminivirus: complementary action of posttranscriptional gene silencing and transcriptional gene silencing in host recovery. J Virol 83:1332–1340

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Negrete E, Lozano-Durán R, Piedra-Aguilera A, Cruzado L, Bejarano ER, Castillo AG (2013) Geminivirus Rep protein interferes with the plant DNA methylation machinery and suppresses transcriptional gene Silencing. New Phytol 199:464–475

    Article  PubMed  Google Scholar 

  • Sahu PP, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013a) Involvement of host regulatory pathways during Geminivirus infection: A novel platform for generating durable resistance. Funct Integr Genomics DOI. doi:10.1007/s10142-013-0346-z

    Google Scholar 

  • Sahu PP, Pandey G, Sharma N, Puranik S, Muthamilarasan M, Prasad M (2013b) Epigenetic mechanisms of plant stress responses and adaptation. Plant Cell Rep 32:1151–1159

    Article  CAS  PubMed  Google Scholar 

  • Sahu PP, Rai NK, Puranik S, Roy A, Khan M, Prasad M (2012) Dynamics of defense related components in two contrasting tomato against tomato leaf curl virus. Mol Biotechnol 52:140–150

    Article  CAS  PubMed  Google Scholar 

  • Sahu PP, Rai NK, Chakraborty S, Singh M, Ramesh B, Chattopadhyay D, Prasad M (2010) Tomato cultivar tolerant to Tomato leaf curl New Delhi virus infection induces virus-specific short interfering RNA accumulation and defence-associated host gene expression. Mol Plant Pathol 11:531–544

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: A laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, U.S.A.

    Google Scholar 

  • Saunders K, Lucy A, Stanley J (1991) DNA forms of the Geminivirus African cassava mosaic virus consistent with a rolling circle mechanism of replication. Nucleic Acids Res 19:2325–2330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seemanpillai M, Dry I, Randles J, Rezaian A (2003) Transcriptional silencing of geminiviral promoter-driven transgenes following homologous virus infection. Mol Plant Microbe Interact 16:429–438

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Sahu PP, Puranik S, Prasad M (2013) Recent advances in plant-virus interaction with emphasis on small interfering RNAs (siRNAs). Mol Biotechnol 55:63–77

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad PV, Akbergenov R, Trinks D, Rajeswaran R, Veluthambi K, Hohn T, Pooggin MM (2005) Promoters, transcripts, and regulatory proteins of Mungbean yellow mosaic Geminivirus. J Virol 79:8149–8163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanley J (1995) Analysis of African cassava mosaic virus recombinants suggests strand nicking occurs within the conserved nonanucleotide motif during the initiation of rolling circle DNA replication. Virology 206:707–712

    Article  CAS  PubMed  Google Scholar 

  • Sunter G, Gardiner WE, Bisaro DM (1989) Identification of tomato golden mosaic virus-specific RNAs in infected plants. Virology 170:243–250

    Article  CAS  PubMed  Google Scholar 

  • Sunter G, Hartitz MD, Bisaro NM (1993) Tomato golden mosaic virus leftward gene expression: autoregulation of Geminivirus replication protein. Virology 195:275–280

    Article  CAS  PubMed  Google Scholar 

  • Thommes P, Osman TAW, Hayes RJ, Buck KW (1993) TGMV replication protein ALl preferentially binds to single stranded DNA from the common region. FEBS Lett 319:95–99

    Article  CAS  PubMed  Google Scholar 

  • Tu J, Sunter G (2007) A conserved binding site within the Tomato golden mosaic virus AL-1629 promoter is necessary for expression of viral genes important for pathogenesis. Virology 367:117–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uthup TK, Ravindran M, Bini K, Thakurdas S (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol Plant 4:996–1013

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:e104

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie Z, Qi X (2008) Diverse small RNA-directed silencing pathways in plants. Biochim Biophys Acta 1779:720–724

    Article  CAS  PubMed  Google Scholar 

  • Yadav RK, Chattopadhyay D (2011) Enhanced viral intergenic region-specific short interfering RNA accumulation and DNA methylation correlates with resistance against a Geminivirus. Mol Plant Microbe Interact 24:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Yadav RK, Shukla RK, Chattopadhyay D (2009) Soybean cultivar resistant to Mungbean yellow mosaic India virus infection induces viral RNA degradation earlier than the susceptible cultivar. Virus Res 144:89–95

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Wang Y, Guo W, Xie Y, Xie Q, Fan L, Zhou X (2011) Characterization of small interfering RNAs derived from the Geminivirus/Betasatellite complex using deep sequencing. PLoS One 6:e16928

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y, Sherwood TA, Patte CP, Hiebert E, Polston JE (2004) Use of Tomato yellow leaf curl virus (TYLCV) rep gene sequences to engineer TYLCV resistance in tomato. Phytopathology 94:490–496

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to the Director of the National Institute of Plant Genome Research (NIPGR) for providing the facilities. We gratefully acknowledge the financial support from NIPGR core grant. We are thankful to Prof. K. Veluthambi, Madurai Kamaraj University, Madurai and Dr. Senthil-Kumar Muthappa and Dr. Debasis Chattopadhyay, NIPGR, India for helpful discussion. Dr. S. Chakraborty, Jawaharlal Nehru University, New Delhi, India is thanked for providing the ToLCNDV infectious clones. No conflict of interest declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Prasad.

Supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 961 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, P.P., Sharma, N., Puranik, S. et al. Post-transcriptional and Epigenetic Arms of RNA Silencing: A Defense Machinery of Naturally Tolerant Tomato Plant Against Tomato Leaf Curl New Delhi Virus . Plant Mol Biol Rep 32, 1015–1029 (2014). https://doi.org/10.1007/s11105-014-0708-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11105-014-0708-2

Keywords

Navigation