Skip to main content

Advertisement

Log in

Glucocorticoid-Potentiated Spinal Microglia Activation Contributes to Preoperative Anxiety-Induced Postoperative Hyperalgesia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Clinically, preoperative anxiety adversely affected postoperative hyperalgesia. As stress-induced glucocorticoids (GCs) were reported to sensitize the activation of microglia, the present study investigated whether and how GCs and microglia played in the process of preoperative anxiety-induced postoperative hyperalgesia. The study used an animal model that exposed rats to single prolonged stress (SPS) procedure to induce preoperative anxiety-like behaviors 24 h before the plantar incisional surgery. Behavioral testing revealed that preoperative SPS enhanced the mechanical allodynia induced by plantar incision. SPS was also found to induce elevated circulating corticosterone levels, potentiate the activation of spinal microglia, and increase the expression of spinal proinflammatory cytokines. Inhibition of microglia by pretreatment with minocycline attenuated the SPS-enhanced mechanical allodynia, and this was accompanied by decreased activation of spinal microglia and expression of proinflammatory cytokines. Another experiment was conducted by administering RU486, the GC receptor (GR) antagonist, to rats. The results showed that RU486 suppressed SPS-induced and SPS-potentiated proinflammatory activation of spinal microglia and revealed analgesic effects. Together, these data indicated that inhibition of stress-induced GR activation attenuated the preoperative anxiety-induced exacerbation of postoperative pain, and the suppression of spinal microglia activation may underlie this anti-hyperalgesia effect. Pending further studies, these findings suggested that GR and spinal microglia may play important roles in the development of preoperative anxiety-induced postoperative hyperalgesia and may serve as novel targets to prevent this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Jawaid M, Mushtaq A, Mukhtar S, Khan Z (2007) Preoperative anxiety before elective surgery. Neurosciences (Riyadh) 12(2):145–148

    Google Scholar 

  2. Nigussie S, Belachew T, Wolancho W (2014) Predictors of preoperative anxiety among surgical patients in Jimma University Specialized Teaching Hospital, South Western Ethiopia. BMC Surg 14:67

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yilmaz M, Sezer H, Gurler H, Bekar M (2012) Predictors of preoperative anxiety in surgical inpatients. J Clin Nurs 21(7-8):956–964

    Article  PubMed  Google Scholar 

  4. Perks A, Chakravarti S, Manninen P (2009) Preoperative anxiety in neurosurgical patients. J Neurosurg Anesthesiol 21(2):127–130

    Article  PubMed  Google Scholar 

  5. Theunissen M, Peters ML, Bruce J, Gramke HF, Marcus MA (2012) Preoperative anxiety and catastrophizing: a systematic review and meta-analysis of the association with chronic postsurgical pain. Clin J Pain 28(9):819–841

    Article  PubMed  Google Scholar 

  6. Ali A, Altun D, Oguz BH, Ilhan M, Demircan F, Koltka K (2014) The effect of preoperative anxiety on postoperative analgesia and anesthesia recovery in patients undergoing laparascopic cholecystectomy. J Anesth 28(2):222–227

    Article  PubMed  Google Scholar 

  7. Ip HY, Abrishami A, Peng PW, Wong J, Chung F (2009) Predictors of postoperative pain and analgesic consumption: a qualitative systematic review. Anesthesiology 111(3):657–677

    Article  PubMed  Google Scholar 

  8. Petrovic NM, Milovanovic DR, Ignjatovic Ristic D, Riznic N, Ristic B, Stepanovic Z (2014) Factors associated with severe postoperative pain in patients with total hip arthroplasty. Acta Orthop Traumatol Turc 48(6):615–622

    Article  PubMed  Google Scholar 

  9. Raichle KA, Osborne TL, Jensen MP, Ehde DM, Smith DG, Robinson LR (2015) Preoperative state anxiety, acute postoperative pain, and analgesic use in persons undergoing lower limb amputation. Clin J Pain 31(8):699–706

    Article  PubMed  Google Scholar 

  10. Jennings EM, Okine BN, Roche M, Finn DP (2014) Stress-induced hyperalgesia. Prog Neurobiol 121:1–18

    Article  PubMed  Google Scholar 

  11. Crettaz B, Marziniak M, Willeke P, Young P, Hellhammer D, Stumpf A, Burgmer M (2013) Stress-induced allodynia—evidence of increased pain sensitivity in healthy humans and patients with chronic pain after experimentally induced psychosocial stress. PLoS ONE 8(8), e69460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tramullas M, Finger BC, Moloney RD, Golubeva AV, Moloney G, Dinan TG, Cryan JF (2014) Toll-like receptor 4 regulates chronic stress-induced visceral pain in mice. Biol Psychiatry 76(4):340–348

    Article  CAS  PubMed  Google Scholar 

  13. Akagi T, Matsumura Y, Yasui M, Minami E, Inoue H, Masuda T, Tozaki-Saitoh H, Tamura T et al (2014) Interferon regulatory factor 8 expressed in microglia contributes to tactile allodynia induced by repeated cold stress in rodents. J Pharmacol Sci 126(2):172–176

    Article  CAS  PubMed  Google Scholar 

  14. Alexander JK, DeVries AC, Kigerl KA, Dahlman JM, Popovich PG (2009) Stress exacerbates neuropathic pain via glucocorticoid and NMDA receptor activation. Brain Behav Immun 23(6):851–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bradesi S, Svensson CI, Steinauer J, Pothoulakis C, Yaksh TL, Mayer EA (2009) Role of spinal microglia in visceral hyperalgesia and NK1R up-regulation in a rat model of chronic stress. Gastroenterology 136(4):1339–1348, e1331-1332

    Article  CAS  PubMed  Google Scholar 

  16. Qi J, Chen C, Lu YC, Zhang T, Xu H, Cui YY, Chen YZ, Wang W et al (2014) Activation of extracellular signal-regulated kinase1/2 in the medial prefrontal cortex contributes to stress-induced hyperalgesia. Mol Neurobiol 50(3):1013–1023

    Article  CAS  PubMed  Google Scholar 

  17. Fu R, Shen Q, Xu P, Luo JJ, Tang Y (2014) Phagocytosis of microglia in the central nervous system diseases. Mol Neurobiol 49(3):1422–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu C, Liu Y, Sun B, Sun Y, Hou B, Zhang Y, Ma Z, Gu X (2015) Intrathecal injection of JWH-015 attenuates bone cancer pain via time-dependent modification of pro-inflammatory cytokines expression and astrocytes activity in spinal cord. Inflammation

  19. Hu JH, Yang JP, Liu L, Li CF, Wang LN, Ji FH, Cheng H (2012) Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res 1465:1–9

    Article  CAS  PubMed  Google Scholar 

  20. Wang XW, Li TT, Zhao J, Mao-Ying QL, Zhang H, Hu S, Li Q, Mi WL et al (2012) Extracellular signal-regulated kinase activation in spinal astrocytes and microglia contributes to cancer-induced bone pain in rats. Neuroscience 217:172–181

    Article  CAS  PubMed  Google Scholar 

  21. Wang D, Couture R, Hong Y (2014) Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol 728:59–66

    Article  CAS  PubMed  Google Scholar 

  22. Sun YE, Peng L, Sun X, Bo J, Yang D, Zheng Y, Liu C, Zhu B et al (2012) Intrathecal injection of spironolactone attenuates radicular pain by inhibition of spinal microglia activation in a rat model. PLoS ONE 7(6), e39897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ito N, Obata H, Saito S (2009) Spinal microglial expression and mechanical hypersensitivity in a postoperative pain model: comparison with a neuropathic pain model. Anesthesiology 111(3):640–648

    Article  PubMed  Google Scholar 

  24. Obata H, Eisenach JC, Hussain H, Bynum T, Vincler M (2006) Spinal glial activation contributes to postoperative mechanical hypersensitivity in the rat. J Pain 7(11):816–822

    Article  CAS  PubMed  Google Scholar 

  25. Wen YR, Tan PH, Cheng JK, Liu YC, Ji RR (2011) Microglia: a promising target for treating neuropathic and postoperative pain, and morphine tolerance. J Formos Med Assoc 110(8):487–494

    Article  PubMed  PubMed Central  Google Scholar 

  26. de Pablos RM, Villaran RF, Arguelles S, Herrera AJ, Venero JL, Ayala A, Cano J, Machado A (2006) Stress increases vulnerability to inflammation in the rat prefrontal cortex. J Neurosci 26(21):5709–5719

    Article  PubMed  Google Scholar 

  27. Espinosa-Oliva AM, de Pablos RM, Villaran RF, Arguelles S, Venero JL, Machado A, Cano J (2011) Stress is critical for LPS-induced activation of microglia and damage in the rat hippocampus. Neurobiol Aging 32(1):85–102

    Article  CAS  PubMed  Google Scholar 

  28. Frank MG, Watkins LR, Maier SF (2011) Stress- and glucocorticoid-induced priming of neuroinflammatory responses: potential mechanisms of stress-induced vulnerability to drugs of abuse. Brain Behav Immun 25(Suppl 1):S21–S28

    Article  CAS  PubMed  Google Scholar 

  29. Weber MD, Frank MG, Sobesky JL, Watkins LR, Maier SF (2013) Blocking toll-like receptor 2 and 4 signaling during a stressor prevents stress-induced priming of neuroinflammatory responses to a subsequent immune challenge. Brain Behav Immun 32:112–121

    Article  CAS  PubMed  Google Scholar 

  30. Wohleb ES, Fenn AM, Pacenta AM, Powell ND, Sheridan JF, Godbout JP (2012) Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology 37(9):1491–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alexander JK, Cox GM, Tian JB, Zha AM, Wei P, Kigerl KA, Reddy MK, Dagia NM et al (2012) Macrophage migration inhibitory factor (MIF) is essential for inflammatory and neuropathic pain and enhances pain in response to stress. Exp Neurol 236(2):351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frank MG, Thompson BM, Watkins LR, Maier SF (2012) Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav Immun 26(2):337–345

    Article  CAS  PubMed  Google Scholar 

  33. Munhoz CD, Lepsch LB, Kawamoto EM, Malta MB, Lima Lde S, Avellar MC, Sapolsky RM, Scavone C (2006) Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci 26(14):3813–3820

    Article  CAS  PubMed  Google Scholar 

  34. Bellavance MA, Rivest S (2014) The HPA-immune axis and the immunomodulatory actions of glucocorticoids in the brain. Front Immunol 5:136

    Article  PubMed  PubMed Central  Google Scholar 

  35. Frank MG, Miguel ZD, Watkins LR, Maier SF (2010) Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun 24(1):19–30

    Article  CAS  PubMed  Google Scholar 

  36. Kelly KA, Miller DB, Bowyer JF, O’Callaghan JP (2012) Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. J Neurochem 122(5):995–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. O’Callaghan JP, Kelly KA, Locker AR, Miller DB, Lasley SM (2015) Corticosterone primes the neuroinflammatory response to DFP in mice: potential animal model of Gulf War Illness. J Neurochem 133(5):708–721

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hong S, Zheng G, Wu X, Snider NT, Owyang C, Wiley JW (2011) Corticosterone mediates reciprocal changes in CB 1 and TRPV1 receptors in primary sensory neurons in the chronically stressed rat. Gastroenterology 140(2):627–637, e624

    Article  CAS  PubMed  Google Scholar 

  39. Liu Y, Hou B, Zhang W, Sun YE, Li L, Ma Z, Gu X (2015) The activation of spinal astrocytes contributes to preoperative anxiety-induced persistent post-operative pain in a rat model of incisional pain. Eur J Pain 19(5):733–740

    Article  CAS  PubMed  Google Scholar 

  40. Zimmermann M (1983) Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16(2):109–110

    Article  CAS  PubMed  Google Scholar 

  41. Rojewska E, Korostynski M, Przewlocki R, Przewlocka B, Mika J (2014) Expression profiling of genes modulated by minocycline in a rat model of neuropathic pain. Mol Pain 10:47

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rossi S, De Chiara V, Musella A, Kusayanagi H, Mataluni G, Bernardi G, Usiello A, Centonze D (2008) Chronic psychoemotional stress impairs cannabinoid-receptor-mediated control of GABA transmission in the striatum. J Neurosci 28(29):7284–7292

    Article  CAS  PubMed  Google Scholar 

  43. Liberzon I, Krstov M, Young EA (1997) Stress-restress: effects on ACTH and fast feedback. Psychoneuroendocrinology 22(6):443–453

    Article  CAS  PubMed  Google Scholar 

  44. Brennan TJ, Vandermeulen EP, Gebhart GF (1996) Characterization of a rat model of incisional pain. Pain 64(3):493–501

    Article  CAS  PubMed  Google Scholar 

  45. Liu X, Wu G, Shi D, Zhu R, Zeng H, Cao B, Huang M, Liao H (2015) Effects of nitric oxide on notexin-induced muscle inflammatory responses. Int J Biol Sci 11(2):156–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gregus AM, Doolen S, Dumlao DS, Buczynski MW, Takasusuki T, Fitzsimmons BL, Hua XY, Taylor BK et al (2012) Spinal 12-lipoxygenase-derived hepoxilin A3 contributes to inflammatory hyperalgesia via activation of TRPV1 and TRPA1 receptors. Proc Natl Acad Sci U S A 109(17):6721–6726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wen YR, Suter MR, Ji RR, Yeh GC, Wu YS, Wang KC, Kohno T, Sun WZ et al (2009) Activation of p38 mitogen-activated protein kinase in spinal microglia contributes to incision-induced mechanical allodynia. Anesthesiology 110(1):155–165

    Article  CAS  PubMed  Google Scholar 

  48. Milligan ED, Watkins LR (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 10(1):23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yasui M, Yoshimura T, Takeuchi S, Tokizane K, Tsuda M, Inoue K, Kiyama H (2014) A chronic fatigue syndrome model demonstrates mechanical allodynia and muscular hyperalgesia via spinal microglial activation. Glia 62(9):1407–1417

    Article  PubMed  Google Scholar 

  50. Suarez-Roca H, Quintero L, Avila R, Medina S, De Freitas M, Cardenas R (2014) Central immune overactivation in the presence of reduced plasma corticosterone contributes to swim stress-induced hyperalgesia. Brain Res Bull 100:61–69

    Article  CAS  PubMed  Google Scholar 

  51. Anacker C, Cattaneo A, Luoni A, Musaelyan K, Zunszain PA, Milanesi E, Rybka J, Berry A et al (2013) Glucocorticoid-related molecular signaling pathways regulating hippocampal neurogenesis. Neuropsychopharmacology 38(5):872–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Egeland M, Zunszain PA, Pariante CM (2015) Molecular mechanisms in the regulation of adult neurogenesis during stress. Nat Rev Neurosci 16(4):189–200

    Article  CAS  PubMed  Google Scholar 

  53. Epel ES (2009) Psychological and metabolic stress: a recipe for accelerated cellular aging? Hormones (Athens) 8(1):7–22

    Article  Google Scholar 

  54. Chen DY, Bambah-Mukku D, Pollonini G, Alberini CM (2012) Glucocorticoid receptors recruit the CaMKIIalpha-BDNF-CREB pathways to mediate memory consolidation. Nat Neurosci 15(12):1707–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Suri D, Vaidya VA (2013) Glucocorticoid regulation of brain-derived neurotrophic factor: relevance to hippocampal structural and functional plasticity. Neuroscience 239:196–213

    Article  CAS  PubMed  Google Scholar 

  56. Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35(3):722–729

    Article  CAS  PubMed  Google Scholar 

  57. Myers B, McKlveen JM, Herman JP (2014) Glucocorticoid actions on synapses, circuits, and behavior: implications for the energetics of stress. Front Neuroendocrinol 35(2):180–196

    Article  CAS  PubMed  Google Scholar 

  58. Wang S, Lim G, Zeng Q, Sung B, Ai Y, Guo G, Yang L, Mao J (2004) Expression of central glucocorticoid receptors after peripheral nerve injury contributes to neuropathic pain behaviors in rats. J Neurosci 24(39):8595–8605

    Article  CAS  PubMed  Google Scholar 

  59. Zhang J, Zhang W, Sun Y, Liu Y, Song L, Ma Z, Gu X (2014) Activation of GRs-Akt-nNOs-NR2B signaling pathway by second dose GR agonist contributes to exacerbated hyperalgesia in a rat model of radicular pain. Mol Biol Rep 41(6):4053–4061

    Article  CAS  PubMed  Google Scholar 

  60. Wang S, Lim G, Yang L, Sung B, Mao J (2006) Downregulation of spinal glutamate transporter EAAC1 following nerve injury is regulated by central glucocorticoid receptors in rats. Pain 120(1-2):78–85

    Article  CAS  PubMed  Google Scholar 

  61. Myers B, Greenwood-Van Meerveld B (2012) Differential involvement of amygdala corticosteroid receptors in visceral hyperalgesia following acute or repeated stress. Am J Physiol Gastrointest Liver Physiol 302(2):G260–G266

    Article  CAS  PubMed  Google Scholar 

  62. Frank MG, Hershman SA, Weber MD, Watkins LR, Maier SF (2014) Chronic exposure to exogenous glucocorticoids primes microglia to pro-inflammatory stimuli and induces NLRP3 mRNA in the hippocampus. Psychoneuroendocrinology 40:191–200

    Article  CAS  PubMed  Google Scholar 

  63. Hermoso MA, Matsuguchi T, Smoak K, Cidlowski JA (2004) Glucocorticoids and tumor necrosis factor alpha cooperatively regulate toll-like receptor 2 gene expression. Mol Cell Biol 24(11):4743–4756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chinenov Y, Rogatsky I (2007) Glucocorticoids and the innate immune system: crosstalk with the toll-like receptor signaling network. Mol Cell Endocrinol 275(1-2):30–42

    Article  CAS  PubMed  Google Scholar 

  65. Busillo JM, Cidlowski JA (2013) The five Rs of glucocorticoid action during inflammation: ready, reinforce, repress, resolve, and restore. Trends Endocrinol Metab 24(3):109–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cruz-Topete D, Cidlowski JA (2015) One hormone, two actions: anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation 22(1-2):20–32

    Article  CAS  PubMed  Google Scholar 

  67. Frank MG, Watkins LR, Maier SF (2015) The permissive role of glucocorticoids in neuroinflammatory priming: mechanisms and insights. Curr Opin Endocrinol Diabetes Obes 22(4):300–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ding Y, Gao ZG, Jacobson KA, Suffredini AF (2010) Dexamethasone enhances ATP-induced inflammatory responses in endothelial cells. J Pharmacol Exp Ther 335(3):693–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Nair A, Bonneau RH (2006) Stress-induced elevation of glucocorticoids increases microglia proliferation through NMDA receptor activation. J Neuroimmunol 171(1-2):72–85

    Article  CAS  PubMed  Google Scholar 

  70. Taves S, Berta T, Liu DL, Gan S, Chen G, Kim YH, Van de Ven T, Laufer S, Ji RR (2015) Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: Sex-dependent microglial signaling in the spinal cord. Brain Behav Immun

  71. Sorge RE, Mapplebeck JC, Rosen S, Beggs S, Taves S, Alexander JK, Martin LJ, Austin JS et al (2015) Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nat Neurosci 18(8):1081–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Myers B, Greenwood-Van Meerveld B (2010) Elevated corticosterone in the amygdala leads to persistent increases in anxiety-like behavior and pain sensitivity. Behav Brain Res 214(2):465–469

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengliang Ma or Xiaoping Gu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Funding

This research was supported by the National Natural Science Foundation of China (81471129, 81171048, 81171047) and a grant from the Department of Health of Jiangsu Province of China (XK201140, RC2011006).

Additional information

Rao Sun and Zhibin Zhao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Zhao, Z., Feng, J. et al. Glucocorticoid-Potentiated Spinal Microglia Activation Contributes to Preoperative Anxiety-Induced Postoperative Hyperalgesia. Mol Neurobiol 54, 4316–4328 (2017). https://doi.org/10.1007/s12035-016-9976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9976-1

Keywords

Navigation