Skip to main content

Advertisement

Log in

Activation of Extracellular Signal-Regulated Kinase1/2 in the Medial Prefrontal Cortex Contributes to Stress-Induced Hyperalgesia

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Stressful stimuli can exacerbate persistent pain disorder. However, the underlying mechanism is still unknown. Here, to reveal the underlying mechanism for stressful stimuli-induced hyperalgesia in chronic pain, we investigated the effect of extracellular signal-regulated kinase1/2 (ERK1/2) activation on pain hypersensitivity using single-prolonged stress (SPS) model, complete Freund’s adjuvant (CFA) model and SPS + CFA model. The experimental results revealed significantly reduced paw withdrawal threshold in the SPS, CFA, and SPS + CFA group compared with the control group. However, the increased phosphorylation of ERK1/2 in the medial prefrontal cortex (mPFC) was observed in the SPS- or SPS + CFA-exposed group but not the CFA group compared with control group. There was also a significant increase in mPFC ERK1/2 phosphorylation and mechanical allodynia after SPS + CFA treatment compared to SPS or CFA treatment alone. Furthermore, inhibiting ERK1/2 phosphorylation by microinjection of U0126, a MAPK kinase (MEK) inhibitor, into the mPFC attenuated SPS + CFA- and SPS- but not CFA-induced mechanical allodynia, anxiety-like behavior, and cognitive impairments. These results suggest that the activation of ERK1/2 in the mPFC may contribute to the process of stress-induced cognitive and emotional disorders, leading to an increase in pain sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Julius D, Basbaum AI (2001) Molecular mechanisms of nociception. Nature 413(6852):203–210

    Article  CAS  PubMed  Google Scholar 

  2. Apkarian AV, Hashmi JA, Baliki MN (2011) Pain and the brain: specificity and plasticity of the brain in clinical chronic pain. Pain 152(3 Suppl):S49–S64

    Article  PubMed Central  PubMed  Google Scholar 

  3. Chapman CR, Tuckett RP, Song CW (2008) Pain and stress in a systems perspective: reciprocal neural, endocrine, and immune interactions. J Pain Off J Am Pain Soc 9(2):122–145

    Article  Google Scholar 

  4. Maviel T, Durkin TP, Menzaghi F, Bontempi B (2004) Sites of neocortical reorganization critical for remote spatial memory. Science 305(5680):96–99

    Article  CAS  PubMed  Google Scholar 

  5. Wei F, Qiu CS, Liauw J, Robinson DA, Ho N, Chatila T, Zhuo M (2002) Calcium calmodulin-dependent protein kinase IV is required for fear memory. Nat Neurosci 5(6):573–579

    Article  CAS  PubMed  Google Scholar 

  6. Wei F, Wang GD, Zhang C, Shokat KM, Wang H, Tsien JZ, Liauw J, Zhuo M (2006) Forebrain overexpression of CaMKII abolishes cingulate long term depression and reduces mechanical allodynia and thermal hyperalgesia. Mol Pain 2:21

    Article  PubMed Central  PubMed  Google Scholar 

  7. Lorenz J, Cross DJ, Minoshima S, Morrow TJ, Paulson PE, Casey KL (2002) A unique representation of heat allodynia in the human brain. Neuron 35(2):383–393

    Article  CAS  PubMed  Google Scholar 

  8. Ji G, Neugebauer V (2012) Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 5:36

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Delvaux MM (1999) Stress and visceral perception. Canadian journal of gastroenterology. J Can Gastroenterol 13(Suppl A):32A–36A

    Google Scholar 

  10. Herrmann M, Scholmerich J, Straub RH (2000) Stress and rheumatic diseases. Rheum Dis Clin N Am 26(4):737–763, viii

    Article  CAS  Google Scholar 

  11. Nash JM, Thebarge RW (2006) Understanding psychological stress, its biological processes, and impact on primary headache. Headache 46(9):1377–1386

    Article  PubMed  Google Scholar 

  12. Wood PB (2004) Stress and dopamine: implications for the pathophysiology of chronic widespread pain. Med Hypotheses 62(3):420–424

    Article  CAS  PubMed  Google Scholar 

  13. Imbe H, Iwai-Liao Y, Senba E (2006) Stress-induced hyperalgesia: animal models and putative mechanisms. Front Biosci J Virtual libr 11:2179–2192

    Article  CAS  Google Scholar 

  14. Zhang J, Wu Z, Zhou L, Li H, Teng H, Dai W, Wang Y, Sun ZS (2011) Deficiency of antinociception and excessive grooming induced by acute immobilization stress in Per1 mutant mice. PLoS One 6(1):e16212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Gameiro GH, Gameiro PH, Andrade Ada S, Pereira LF, Arthuri MT, Marcondes FK, Veiga MC (2006) Nociception- and anxiety-like behavior in rats submitted to different periods of restraint stress. Physiol Behav 87(4):643–649

    Article  CAS  PubMed  Google Scholar 

  16. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869

    CAS  PubMed  Google Scholar 

  17. Imbe H, Senba E, Kimura A, Donishi T, Yokoi I, Kaneoke Y (2011) Activation of mitogen-activated protein kinase in descending pain modulatory system. J Sig Transduct 2011:468061

    Google Scholar 

  18. Wang HT, Han F, Gao JL, Shi YX (2010) Increased phosphorylation of extracellular signal-regulated kinase in the medial prefrontal cortex of the single-prolonged stress rats. Cell Mol Neurobiol 30(3):437–444

    Article  PubMed  Google Scholar 

  19. Mifsud KR, Gutierrez-Mecinas M, Trollope AF, Collins A, Saunderson EA, Reul JM (2011) Epigenetic mechanisms in stress and adaptation. Brain Behav Immun 25(7):1305–1315

    Article  CAS  PubMed  Google Scholar 

  20. Wang W, Liu Y, Zheng H, Wang HN, Jin X, Chen YC, Zheng LN, Luo XX, Tan QR (2008) A modified single-prolonged stress model for post-traumatic stress disorder. Neurosci Lett 441(2):237–241

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Gandhi PR, Standifer KM (2012) Increased nociceptive sensitivity and nociceptin/orphanin FQ levels in a rat model of PTSD. Mol Pain 8:76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Simonetti M, Hagenston AM, Vardeh D, Freitag HE, Mauceri D, Lu J, Satagopam VP, Schneider R, Costigan M, Bading H, Kuner R (2013) Nuclear calcium signaling in spinal neurons drives a genomic program required for persistent inflammatory pain. Neuron 77(1):43–57

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Antelman SM, Knopf S, Kocan D, Edwards DJ, Ritchie JC, Nemeroff CB (1988) One stressful event blocks multiple actions of diazepam for up to at least a month. Brain Res 445(2):380–385

    Article  CAS  PubMed  Google Scholar 

  24. Imanaka A, Morinobu S, Toki S, Yamawaki S (2006) Importance of early environment in the development of post-traumatic stress disorder-like behaviors. Behav Brain Res 173(1):129–137

    Article  PubMed  Google Scholar 

  25. Morris RG, Garrud P, Rawlins JN, O'Keefe J (1982) Place navigation impaired in rats with hippocampal lesions. Nature 297(5868):681–683

    Article  CAS  PubMed  Google Scholar 

  26. Guillery RW (2002) On counting and counting errors. J Comp Neurol 447(1):1–7

    Article  CAS  PubMed  Google Scholar 

  27. Wang HN, Peng Y, Tan QR, Chen YC, Zhang RG, Qiao YT, Wang HH, Liu L, Kuang F, Wang BR, Zhang ZJ (2010) Quetiapine ameliorates anxiety-like behavior and cognitive impairments in stressed rats: implications for the treatment of posttraumatic stress disorder. Physiol Res 59(2):263–271

  28. Costa A, Smeraldi A, Tassorelli C, Greco R, Nappi G (2005) Effects of acute and chronic restraint stress on nitroglycerin-induced hyperalgesia in rats. Neurosci Lett 383(1–2):7–11

    Article  CAS  PubMed  Google Scholar 

  29. Vendruscolo LF, Takahashi RN (2004) Synergistic interaction between mazindol, an anorectic drug, and swim-stress on analgesic responses in the formalin test in mice. Neurosci Lett 355(1–2):13–16

    Article  CAS  PubMed  Google Scholar 

  30. Moeller-Bertram T, Keltner J, Strigo IA (2012) Pain and post traumatic stress disorder—review of clinical and experimental evidence. Neuropharmacology 62(2):586–597

    Article  CAS  PubMed  Google Scholar 

  31. Cowan KJ, Storey KB (2003) Mitogen-activated protein kinases: new signaling pathways functioning in cellular responses to environmental stress. J Exp Biol 206(Pt 7):1107–1115

    Article  CAS  PubMed  Google Scholar 

  32. Obara Y, Nakahata N (2010) The signaling pathway leading to extracellular signal-regulated kinase 5 (ERK5) activation via G-proteins and ERK5-dependent neurotrophic effects. Mol Pharmacol 77(1):10–16

    Article  CAS  PubMed  Google Scholar 

  33. Wang JQ, Fibuch EE, Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100(1):1–11

    Article  CAS  PubMed  Google Scholar 

  34. Zheng G, Chen Y, Zhang X, Cai T, Liu M, Zhao F, Luo W, Chen J (2008) Acute cold exposure and rewarming enhanced spatial memory and activated the MAPK cascades in the rat brain. Brain Res 1239:171–180

    Article  CAS  PubMed  Google Scholar 

  35. Rome HP Jr, Rome JD (2000) Limbically augmented pain syndrome (LAPS): kindling, corticolimbic sensitization, and the convergence of affective and sensory symptoms in chronic pain disorders. Pain Med 1(1):7–23

    Article  PubMed  Google Scholar 

  36. Cao H, Gao YJ, Ren WH, Li TT, Duan KZ, Cui YH, Cao XH, Zhao ZQ, Ji RR, Zhang YQ (2009) Activation of extracellular signal-regulated kinase in the anterior cingulate cortex contributes to the induction and expression of affective pain. J Neurosci 29(10):3307–3321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Fang JF, Liang Y, Du JY, Fang JQ (2013) Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats. BMC Complement Alternat Med 13(1):134

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (nos. 30971123, 31010103909, 81171050, 81371239).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Wang, Yu-Lin Dong or Yun-Qing Li.

Additional information

Jian Qi and Chen Chen contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Photomicrograph of coronal brain sections from three representative rats showing bilateral microinjections in the mPFC. Diagrammatic representations based on the rat brain atlas of Paxinos and Watson indicate the location of mPFC and ACC. ACC, anterior cingulate cortex; Cg1, Cingulate cortex, area 1; IL, infralimbic cortex; PrL, prelimbic cortex; cc, corpus callosum. The microinjection sites were located in mPFC (A-D, A’-D’, A”-D”), without diffusion to other area, such as ACC (E, E’, E”). Scale Bar = 200 μm. (JPEG 869 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, J., Chen, C., Lu, YC. et al. Activation of Extracellular Signal-Regulated Kinase1/2 in the Medial Prefrontal Cortex Contributes to Stress-Induced Hyperalgesia. Mol Neurobiol 50, 1013–1023 (2014). https://doi.org/10.1007/s12035-014-8707-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8707-8

Keywords

Navigation