Skip to main content

Advertisement

Log in

Carnosic Acid Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells by Inducing Autophagy Through an Enhanced Interaction of Parkin and Beclin1

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Enhanced removal of abnormal protein aggregates or injured organelles through autophagy is related to neuroprotection in Parkinson’s disease. In this study, we explored whether the induction of autophagy is associated with the neuroprotection of rosemary carnosic acid (CA) against 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in SH-SY5Y cells. The results indicated that cells treated with CA had increased protein levels of parkin and autophagy-related markers, including phosphatidylinositol 3-kinase p100, Beclin1, autophagy-related gene 7, and microtubule-associated protein 1 light chain 3-II, as well as enhanced formation of autophagic vacuoles. Treatment of cells with 6-OHDA decreased the levels of parkin and the autophagy markers, but CA pretreatment reversed these effects. However, wortmannin (an autophagosome formation blocker) pretreatment attenuated the effect of CA. After CA pretreatment, the induction of cleaved caspase 3, cleaved poly-ADP ribose polymerase, and nuclear condensation by 6-OHDA were alleviated. Both wortmannin and bafilomycin A1 (an autophagosome-lysosome fusion blocker) inhibited the anti-apoptosis effects of CA. Additionally, we performed immunoprecipitation with anti-parkin antibody and found that the interaction of parkin and Beclin1 protein was reduced by 6-OHDA but that this effect was reversed in cells pretreated with CA. Moreover, transfection of parkin siRNA in cells inhibited the ability of CA to alleviate 6-OHDA-decreased autophagy-related markers and nuclear condensation. In conclusion, CA protects against 6-OHDA-induced apoptosis by inducing autophagy through the interaction of parkin and Beclin1. These results provide a future strategy for use of CA in the prevention of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Atg proteins:

Autophagy-related proteins

Baf-1:

Bafilomycin A1

CA:

Carnosic acid

Class III PI3K:

Class III phosphatidylinositol 3-kinase

6-OHDA:

6-Hydroxydopamine

MPTP:

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

mTOR:

Mammalian target of rapamycin

PD:

Parkinson’s disease

PARP:

Poly-ADP ribose polymerase

Wort:

Wortmannin

siRNA:

Small interfering RNA

UPS:

Ubiquitin proteasome system

References

  1. Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29:1583–1590

    Article  PubMed  Google Scholar 

  2. McNaught KS, Olanow CW (2006) Protein aggregation in the pathogenesis of familial and sporadic Parkinson’s disease. Neurobiol Aging 27:530–545

    Article  CAS  PubMed  Google Scholar 

  3. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26:1049–1055

    Article  PubMed  Google Scholar 

  4. Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  5. Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131:1969–1978

    Article  PubMed  Google Scholar 

  6. Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 35:385–398

    Article  CAS  PubMed  Google Scholar 

  7. Glick D, Barth S, Macleod KF (2010) Autophagy: cellular and molecular mechanisms. J Pathol 221:3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu Y, Li X, Zhu JX, Xie W, Le W, Fan Z, Jankovic J, Pan T (2011) Resveratrol-activated AMPK/SIRT1/autophagy in cellular models of Parkinson’s disease. Neurosignals 19:163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  PubMed  Google Scholar 

  10. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  11. Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W (2009) Rapamycin protects against rotenone-induced apoptosis through autophagy induction. Neuroscience 164:541–551

    Article  CAS  PubMed  Google Scholar 

  12. Deng YN, Shi J, Liu J, Qu QM (2013) Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy. Neurochem Int 63:1–9

    Article  CAS  PubMed  Google Scholar 

  13. Liu K, Shi N, Sun Y, Zhang T, Sun X (2013) Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice. Neurochem Res 38:201–207

    Article  CAS  PubMed  Google Scholar 

  14. Dagda RK, Das Banerjee T, Janda E (2013) How Parkinsonian toxins dysregulate the autophagy machinery. Int J Mol Sci 14:22163–22189

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305

    Article  CAS  PubMed  Google Scholar 

  16. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608

    Article  CAS  PubMed  Google Scholar 

  17. Farrer M, Chan P, Chen R, Tan L, Lincoln S, Hernandez D, Forno L, Gwinn-Hardy K et al (2001) Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 50:293–300

    Article  CAS  PubMed  Google Scholar 

  18. Pramstaller PP, Schlossmacher MG, Jacques TS, Scaravilli F, Eskelson C, Pepivani I, Hedrich K, Adel S et al (2005) Lewy body Parkinson’s disease in a large pedigree with 77 parkin mutation carriers. Ann Neurol 58:411–422

    Article  CAS  PubMed  Google Scholar 

  19. Jiang H, Ren Y, Zhao J, Feng J (2004) Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 13:1745–1754

    Article  CAS  PubMed  Google Scholar 

  20. Bian M, Liu J, Hong X, Yu M, Huang Y, Sheng Z, Fei J, Huang F (2012) Overexpression of parkin ameliorates dopaminergic neurodegeneration induced by 1- methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice. PLoS One 7, e39953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wu L, Luo N, Zhao HR, Gao Q, Lu J, Pan Y, Shi JP, Tian YY et al (2014) Salubrinal protects against rotenone-induced SH-SY5Y cell death via ATF4-parkin pathway. Brain Res 1549:52–62

    Article  CAS  PubMed  Google Scholar 

  22. Yang H, Zhou HY, Li B, Niu GZ, Chen SD (2007) Downregulation of parkin damages antioxidant defenses and enhances proteasome inhibition-induced toxicity in PC12 cells. J Neuroimmune Pharmacol 2:276–283

    Article  PubMed  Google Scholar 

  23. Lonskaya I, Hebron ML, Algarzae NK, Desforges N, Moussa CE (2013) Decreased parkin solubility is associated with impairment of autophagy in the nigrostriatum of sporadic Parkinson’s disease. Neuroscience 232:90–105

    Article  CAS  PubMed  Google Scholar 

  24. Lonskaya I, Shekoyan AR, Hebron ML, Desforges N, Algarzae NK, Moussa CE (2013) Diminished parkin solubility and co-localization with intraneuronal amyloid-beta are associated with autophagic defects in Alzheimer’s disease. J Alzheimers Dis 33:231–247

    CAS  PubMed  Google Scholar 

  25. Lonskaya I, Desforges NM, Hebron ML, Moussa CE (2013) Ubiquitination increases parkin activity to promote autophagic alpha-synuclein clearance. PLoS One 8, e83914

    Article  PubMed  PubMed Central  Google Scholar 

  26. Posadas SJ, Caz V, Largo C, De la Gandara B, Matallanas B, Reglero G, De Miguel E (2009) Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats. Exp Gerontol 44:383–389

    Article  CAS  PubMed  Google Scholar 

  27. Russo A, Lombardo L, Troncoso N, Garbarino J, Cardile V (2009) Rosmarinus officinalis extract inhibits human melanoma cell growth. Nat Prod Commun 4:1707–1710

    CAS  PubMed  Google Scholar 

  28. Tsai CW, Liu KL, Lin YR, Kuo WC (2014) The mechanisms of carnosic acid attenuates tumor necrosis factor-alpha-mediated inflammation and insulin resistance in 3T3-L1 adipocytes. Mol Nutr Food Res 58:654–664

    Article  CAS  PubMed  Google Scholar 

  29. Hou CW, Lin YT, Chen YL, Wang YH, Chou JL, Ping LY, Jeng KC (2012) Neuroprotective effects of carnosic acid on neuronal cells under ischemic and hypoxic stress. Nutr Neurosci 15:257–263

    Article  CAS  PubMed  Google Scholar 

  30. Chen JH, Ou HP, Lin CY, Lin FJ, Wu CR, Chang SW, Tsai CW (2012) Carnosic acid prevents 6-hydroxydopamine-induced cell death in SH-SY5Y cells via mediation of glutathione synthesis. Chem Res Toxicol 25:1893–1901

    Article  CAS  PubMed  Google Scholar 

  31. Lin CY, Chen JH, Fu RH, Tsai CW (2014) Induction of Pi form of glutathione S-transferase by carnosic acid is mediated through PI3K/Akt/NF-kappaB pathway and protects against neurotoxicity. Chem Res Toxicol 27:1958–1966

    Article  CAS  PubMed  Google Scholar 

  32. Wu CR, Tsai CW, Chang SW, Lin CY, Huang LC (2015) Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: involvement of antioxidative enzymes induction. Chem Biol Interact 225:40–46

    Article  CAS  PubMed  Google Scholar 

  33. Tsai CW, Lin CY, Lin HH, Chen JH (2011) Carnosic acid, a rosemary phenolic compound, induces apoptosis through reactive oxygen species-mediated p38 activation in human neuroblastoma IMR-32 cells. Neurochem Res 36:2442–2451

    Article  CAS  PubMed  Google Scholar 

  34. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246

    Article  CAS  PubMed  Google Scholar 

  35. Tassa A, Roux MP, Attaix D, Bechet DM (2003) Class III phosphoinositide 3-kinase—Beclin1 complex mediates the amino acid-dependent regulation of autophagy in C2C12 myotubes. Biochem J 376:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  PubMed  Google Scholar 

  37. Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S (2005) Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 24:980–991

    Article  CAS  PubMed  Google Scholar 

  38. Bae N, Ahn T, Chung S, Oh MS, Ko H, Oh H, Park G, Yang HO (2011) The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson’s disease. J Ethnopharmacol 134:313–322

    Article  PubMed  Google Scholar 

  39. Garcia-Garcia A, Anandhan A, Burns M, Chen H, Zhou Y, Franco R (2013) Impairment of Atg5-dependent autophagic flux promotes paraquat- and MPP(+)-induced apoptosis but not rotenone or 6-hydroxydopamine toxicity. Toxicol Sci 136:166–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Butler D, Nixon RA, Bahr BA (2006) Potential compensatory responses through autophagic/lysosomal pathways in neurodegenerative diseases. Autophagy 2:234–237

    Article  CAS  PubMed  Google Scholar 

  41. Trojanowski JQ, Lee VM (2000) “Fatal attractions” of proteins. A comprehensive hypothetical mechanism underlying Alzheimer’s disease and other neurodegenerative disorders. Ann N Y Acad Sci 924:62–67

    Article  CAS  PubMed  Google Scholar 

  42. Gonzalez-Polo RA, Niso-Santano M, Ortiz-Ortiz MA, Gomez-Martin A, Moran JM, Garcia-Rubio L, Francisco-Morcillo J, Zaragoza C et al (2007) Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells. Toxicol Sci 97:448–458

    Article  CAS  PubMed  Google Scholar 

  43. Yang YP, Liang ZQ, Gu ZL, Qin ZH (2005) Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 26:1421–1434

    Article  CAS  PubMed  Google Scholar 

  44. Tolkovsky AM (2009) Mitophagy. Biochim Biophys Acta 1793:1508–1515

    Article  CAS  PubMed  Google Scholar 

  45. Cao BY, Yang YP, Luo WF, Mao CJ, Han R, Sun X, Cheng J, Liu CF (2010) Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway. J Ethnopharmacol 131:122–129

    Article  CAS  PubMed  Google Scholar 

  46. Filomeni G, Graziani I, De Zio D, Dini L, Centonze D, Rotilio G, Ciriolo MR (2012) Neuroprotection of kaempferol by autophagy in models of rotenone-mediated acute toxicity: possible implications for Parkinson’s disease. Neurobiol Aging 33:767–785

    Article  CAS  PubMed  Google Scholar 

  47. Khasnavis S, Pahan K (2014) Cinnamon treatment upregulates neuroprotective proteins parkin and DJ-1 and protects dopaminergic neurons in a mouse model of Parkinson’s disease. J Neuroimmune Pharmacol 9:569–581

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sonia Angeline M, Sarkar A, Anand K, Ambasta RK, Kumar P (2013) Sesamol and naringenin reverse the effect of rotenone-induced PD rat model. Neuroscience 254:379–394

    Article  CAS  PubMed  Google Scholar 

  49. Geisler S, Holmstrom KM, Skujat D, Fiesel FC, Rothfuss OC, Kahle PJ, Springer W (2010) PINK1/parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 12:119–131

    Article  CAS  PubMed  Google Scholar 

  50. Cookson MR (2003) Parkin’s substrates and the pathways leading to neuronal damage. Neuromolecular Med 3:1–13

    Article  CAS  PubMed  Google Scholar 

  51. Olzmann JA, Chin LS (2008) Parkin-mediated K63-linked polyubiquitination: a signal for targeting misfolded proteins to the aggresome-autophagy pathway. Autophagy 4:85–87

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council (NSC 101-2320-B-039-052-MY2) and Ministry of Science and Technology (MOST 103-2320-B-039-042-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Wen Tsai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY., Tsai, CW. Carnosic Acid Attenuates 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells by Inducing Autophagy Through an Enhanced Interaction of Parkin and Beclin1. Mol Neurobiol 54, 2813–2822 (2017). https://doi.org/10.1007/s12035-016-9873-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9873-7

Keywords

Navigation