Skip to main content
Log in

Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brain inflammation has a critical role in the pathophysiology of brain diseases. Microglia, the resident immune cells in the brain, play an important role in brain inflammation, while brain mast cells are the “first responder” in the injury rather than microglia. Functional aspects of mast cell-microglia interactions remain poorly understood. Our results demonstrated that site-directed injection of the “mast cell degranulator” compound 48/80 (C48/80) in the hypothalamus induced mast cell degranulation, microglial activation, and inflammatory factor production, which initiated the acute brain inflammatory response. “Mast cell stabilizer” disodium cromoglycate (cromolyn) inhibited this effect, including decrease of inflammatory cytokines, reduced microglial activation, inhibition of MAPK and AKT pathways, and repression of protein expression of histamine receptor 1 (H1R), histamine receptor 4 (H4R), protease-activated receptor 2 (PAR2), and toll-like receptor 4 (TLR4) in microglia. We also demonstrated that C48/80 had no effect on microglial activation in mast cell-deficient KitW-sh/W-sh mice. These results implicate that activated brain mast cells trigger microglial activation and stabilization of mast cell inhibits microglial activation-induced central nervous system (CNS) inflammation. Interactions between mast cells and microglia could constitute a new and unique therapeutic target for CNS immune inflammation-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nilupul Perera M, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, Donnan GA (2006) Inflammation following stroke. J Clin Neurosci 13:1–8

    Article  CAS  PubMed  Google Scholar 

  2. De Chiara G, Marcocci ME, Sgarbanti R, Civitelli L, Ripoli C, Piacentini R, Garaci E, Grassi C et al (2012) Infectious agents and neurodegeneration. Mol Neurobiol 46:614–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Block ML, Hong JS (2005) Microglial and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76:77–98

    Article  CAS  PubMed  Google Scholar 

  4. Herrera AJ, Tomas-Camardiel M, Venero JL, Cano J, Machado A (2005) Inflammatory process as a determinant factor for the degeneration of substantia nigra dopaminergic neurons. J Neural Transm 112:111–119

    Article  CAS  PubMed  Google Scholar 

  5. Gao HM, Liu B, Zhang W, Hong JS (2003) Novel anti-inflammatory therapy for Parkinson’s disease. Trends Pharmacol Sci 24:395–401

    Article  CAS  PubMed  Google Scholar 

  6. Skaper SD, Facci L, Giusti P (2014) Mast cells, glia and neuroinflammation: partners in crime? Immunology 141:314–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dropp JJ (1976) Mast cells in mammalian brain. Acta Anat 94:1–21

    Article  CAS  PubMed  Google Scholar 

  8. Theoharides TC, Stewart JM, Panagiotidou S, Melamed I. (2015). Mast cells, brain inflammation and autism. Eur J Pharmacol. doi: 10.1016/j.ejphar.2015.03.086

  9. Silverman AJ, Sutherland AK, Wilhelm M, Silver R (2000) Mast cells migrate from blood to brain. J Neurosci 20:401–408

    CAS  PubMed  Google Scholar 

  10. Theoharides TC, Angelidou A, Alysandratos KD, Zhang B, Asadi S, Francis K, Toniato E, Kalogeromitros D (2012) Mast cell activation and autism. Biochim Biophys Acta 1822:34–41

    Article  CAS  PubMed  Google Scholar 

  11. Khalil MH, Silverman AJ, Silver R (2003) Mast cells in the rat brain synthesize gonadotropin-releasing hormone. Neurobiol 56:113–124

    Article  CAS  Google Scholar 

  12. Silver R, Silverman AJ, Vitkovic L, Lederhendler I (1996) Mast cells in the brain: evidence and functional significance. Trends Neurosci 19:25–31

    Article  CAS  PubMed  Google Scholar 

  13. Ikarashi Y, Yuzurihara M (2002) Experimental anxiety induced by histaminergics in mast cell-deficient and congenitally normal mice. Pharmacol Biochem Behav 72:437–441

    Article  CAS  PubMed  Google Scholar 

  14. Theoharides TC, Cochrane DE (2004) Critical role of mast cells in inflammatory diseases and the effect of acute stress. J Neuroimmunol 146:1–12

    Article  CAS  PubMed  Google Scholar 

  15. Jutel M, Watanabe T, Klunker S, Akdis M, Thomet OA, Malolepszy J, Zak-Nejmark T, Koga R et al (2001) Histamine regulates T-cell and antibody responses by differential expression of H1 and H2 receptors. Nature 413:420–425

    Article  CAS  PubMed  Google Scholar 

  16. Skaper SD, Facci L (2012) Mast cell–glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philos Trans R Soc LondB Biol Sci 367:3312–3325

    Article  CAS  Google Scholar 

  17. Yuan H, Zhu X, Zhou S, Chen Q, Zhu X, Ma X, He X, Tian M et al (2010) Role of mast cell activation in inducing microglial cells to release neurotrophin. J Neurosci Res 88:1348–1354

    CAS  PubMed  Google Scholar 

  18. Zhang S, Zeng X, Yang H, Hu G, He S (2012) Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol Biochem 29:931–940

    Article  PubMed  Google Scholar 

  19. Dong H, Zhang W, Zeng X, Hu G, Zhang H, He S, Zhang S (2014) Histamine induces upregulated expression of histamine receptors and increases release of inflammatorymediators from microglia. Mol Neurobiol 49:1487–1500

    Article  CAS  PubMed  Google Scholar 

  20. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, Inc, Orlando, Florida, p 32887

    Google Scholar 

  21. Paxinos G, Franklin K (2001) The mouse brain in stereotatic coordinates. Acadmic Press. pp. Figs, London, pp 1–100

    Google Scholar 

  22. Akundi RS, Candelario-Jalil E, Hess S, Hull M, Lieb K, Gebicke-Haerter PJ, Fiebich BL (2005) Signal transduction pathways regulating cyclooxygenase-2 in lipopolysaccharide-activated primary rat microglia. Glia 51:199–208

    Article  PubMed  Google Scholar 

  23. Ciallella JR, Saporito M, Lund S, Leist M, Hasseldam H, McGann N, Smith CS, Bozyczko-Coyne D et al (2005) CEP-11004, an inhibitor of the SAPK/JNK pathway, reduces TNF-alpha release from lipopolysaccharide-treated cells and mice. Eur J Pharmacol 515:179–187

    Article  CAS  PubMed  Google Scholar 

  24. Desai P, Thurmond RL (2011) Histamine H4 receptor activation enhances LPS-induced IL-6 production in mast cells via ERK and PI3K activation. Eur J Immunol 41:1764–1773

    Article  CAS  PubMed  Google Scholar 

  25. Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. Faseb J 26:3103–3017

    Article  CAS  PubMed  Google Scholar 

  26. Biran V, Cochois V, Karroubi A, Arrang JM, Charriaut-Marlangue C, Heron A (2008) Stroke induces histamine accumulation and mast cell degranulation in the neonatal rat brain. Brain Pathol 18:1–9

    Article  CAS  PubMed  Google Scholar 

  27. Lozada A, Maegele M, Stark H, Neugebauer EM, Panula P (2005) Traumatic brain injury results in mast cell increase and changes in regulation of central histamine receptors. Neuropathol Appl Neurobiol 31:150–162

    Article  CAS  PubMed  Google Scholar 

  28. Jin Y, Silverman AJ, Vannucci SJ (2009) Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 40:3107–3112

    Article  CAS  PubMed  Google Scholar 

  29. Gregersen R, Lambertsen K, Finsen B (2000) Microglia and macrophages are the major source of tumor necrosis factor in permanent middle cerebral artery occlusion in mice. J Cereb Blood Flow Metab 20:53–65

    Article  CAS  PubMed  Google Scholar 

  30. Lambertsen KL, Meldgaard M, Ladeby R, Finsen B (2005) A quantitative study of microglial-macrophage synthesis of tumor necrosis factor during acute and late focal cerebral ischemia in mice. J Cereb Blood Flow Metab 25:119–135

    Article  CAS  PubMed  Google Scholar 

  31. Hallenbeck JM (2002) The many faces of tumor necrosis factor in stroke. Nat Med 8:1363–1368

    Article  CAS  PubMed  Google Scholar 

  32. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–399

    Article  CAS  PubMed  Google Scholar 

  33. Minghetti L (2005) Role of inflammation in neurodegenerative diseases. Curr Opin Neurol 18:315–321

    Article  CAS  PubMed  Google Scholar 

  34. Maurer M, Theoharides T, Granstein RD, Bischoff SC, Bienenstock J, Henz B, Kovanen P, Piliponsky AM et al (2003) What is the physiological function of mast cells? Exp Dermatol 12:886–910

    Article  CAS  PubMed  Google Scholar 

  35. Galli SJ, Nakae S, Tsai M (2005) Mast cells in the development of adaptive immune responses. Nat Immunol 6:135–142

    Article  CAS  PubMed  Google Scholar 

  36. Galli SJ, Kalesnikoff J, Grimbaldeston MA, Piliponsky AM, Williams CM, Tsai M (2005) Mast cells as “Tunable” effector and immunoregulatory cells: recent advances. Annu Rev Immunol 23:749–786

    Article  CAS  PubMed  Google Scholar 

  37. Feuser K, Thon KP, Bischoff SC, Lorentz A (2012) Human intestinal mast cells are a potent source of multiple chemokines. Cytokine 58:178–185

    Article  CAS  PubMed  Google Scholar 

  38. Bulanova E, Bulfone-Paus S (2010) P2 receptor-mediated signaling in mast cell biology. Purinergic Signal 6:3–17

    Article  CAS  PubMed  Google Scholar 

  39. Khalil MH, Silverman AJ, Silver R (2004) Mast cell mediators alter electrical activity of rat thalamic neurons. In: Keystone symposium on mast cells in physiology, host defense and disease. Beyond IgE, Taos, New Mexico, p 57

    Google Scholar 

  40. Esposito P, Gheorghe D, Kandere K, Pang X, Connolly R, Jacobson S, Theoharides TC (2001) Acute stress increases permeability of the blood–brain barrier through activation of brain mast cells. Brain Res 888:117–127

    Article  CAS  PubMed  Google Scholar 

  41. Skuljec J, Sun H, Pul R, Bénardais K, Ragancokova D, Moharregh-Khiabani D, Kotsiari A, Trebst C et al (2011) CCL5 induces a pro-inflammatory profile in microglia in vitro. Cell Immunol 270:164–171

    Article  CAS  PubMed  Google Scholar 

  42. Chakraborty S, Kaushik DK, Gupta M, Basu A (2010) Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 88:1615–1631

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was sponsored by the National Natural Science Foundation of China (nos. 81102422, 81373398, and 81471410), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Zhang.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Hongquan Dong and Xiang Zhang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Zhang, X., Wang, Y. et al. Suppression of Brain Mast Cells Degranulation Inhibits Microglial Activation and Central Nervous System Inflammation. Mol Neurobiol 54, 997–1007 (2017). https://doi.org/10.1007/s12035-016-9720-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-9720-x

Keywords

Navigation