Skip to main content

Mast Cells and Glia as Targets for the Anandamide Congener Palmitoylethanolamide: an Anti-inflammatory and Neuroprotective Lipid Signaling Molecule

  • Chapter
  • First Online:
Endocannabinoids and Lipid Mediators in Brain Functions

Abstract

Glia and microglia in particular elaborate pro-inflammatory molecules which play key roles in central nervous system (CNS) disorders from neuropathic pain and epilepsy to neurodegenerative diseases. Microglia respond also to pro-inflammatory signals released from other nonneuronal cells, mainly those of immune origin such as mast cells. The latter can be found in most tissues, are CNS-resident, and traverse the blood–spinal cord and blood–brain barriers when barrier compromise results from CNS pathology. The existence of multiple lines of communication between mast cells and glia may provide new avenues for the development of therapies which target neuroinflammation by differentially modulating activation of those nonneuronal cell populations controlling neuronal sensitization—both peripherally and centrally. Mast cells and glia have “built in” homeostatic mechanisms/molecules that come into play as a result of tissue damage or stimulation of inflammatory responses. Such molecules include the N-acylethanolamine family. One such member, N-palmitoylethanolamine, is proposed to have a key role in the maintenance of cellular homeostasis in the face of external stressors provoking, for example, inflammation. N-Palmitoylethanolamine has been proven efficacious in mast cell-mediated experimental models of acute and neurogenic inflammation. This review will give an overview of current knowledge relating to the pathobiology of neuroinflammation, the role of microglia and mast cells, and the proposal that mast cell–microglia cross talk may exacerbate acute symptoms of chronic neurodegenerative disease and accelerate disease progression, as well as promote pain transmission pathways. We will conclude by considering the therapeutic potential of treating systemic inflammation or the blocking of signaling pathways from the periphery to the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad A, Crupi R, Impellizzeri D, Campolo M, Marino A, Esposito E, Cuzzocrea S (2012a) Administration of palmitoylethanolamide (PEA) protects the neurovascular unit and reduces secondary injury after traumatic brain injury in mice. Brain Behav Immun 26:1310–1321

    Article  CAS  PubMed  Google Scholar 

  • Ahmad A, Genovese T, Impellizzeri D, Crupi R, Velardi E, Marino A, Esposito E, Cuzzocrea S (2012b) Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats. Brain Res 1477:45–58

    Article  CAS  PubMed  Google Scholar 

  • Alhouayek M, Muccioli GG (2014) Harnessing the anti-inflammatory potential of palmitoylethanolamide. Drug Discov Today 19:1632–1639

    Article  CAS  PubMed  Google Scholar 

  • Amor S, Peferoen LA, Vogel DY, Breur M, van der Valk P, Baker D, van Noort JM (2014) Innate and adaptive immune responses in neurodegeneration and repair. Immunology 141:287–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appel SH, Zhao W, Beers DR, Henkel JS (2011) The microglial-motoneuron dialogue in ALS. Acta Myol 30:4–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker D, Pryce G, Croxford JL, Brown P, Pertwee RG, Makriyannis A, Khanolkar A, Layward L, Fezza F, Bisogno T, Di Marzo V (2001) Endocannabinoids control spasticity in a multiple sclerosis model. FASEB J 15:300–302

    CAS  PubMed  Google Scholar 

  • Ballini E, Virginio C, Medhurst SJ, Summerfield SG, Aldegheri L, Buson A, Carignani C, Chen YH, Giacometti A, Lago I, Powell AJ, Jarolimek W (2011) Characterization of three diaminopyrimidines as potent and selective antagonists of P2X3 and P2X2/3 receptors with in vivo efficacy in a pain model. Br J Pharmacol 163:1315–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benito C, Tolón RM, Castillo AI, Ruiz-Valdepeñas L, Martínez-Orgado JA, Fernández-Sánchez FJ, Vázquez C, Cravatt BF, Romero J (2012) β-Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-α, PPAR-γ and TRPV1, but not CB1 or CB2 receptors. Br J Pharmacol 166:1474–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bíró T, Maurer M, Modarres S, Lewin E, Brodie C, Acs G, Acs P, Paus R, Blumberg PM (1998) Characterization of functional vanilloid receptors expressed by mast cells. Blood 91:1332–1340

    PubMed  Google Scholar 

  • Bisogno T, Maurelli S, Melck D, De Petrocellis L, Di Marzo V (1997a) Biosynthesis, uptake, and degradation of anandamide and palmitoylethanolamide in leukocytes. J Biol Chem 272:3315–3323

    Article  CAS  PubMed  Google Scholar 

  • Bisogno T, Ventriglia M, Milone A, Mosca M, Cimino G, Di Marzo V (1997b) Occurrence and metabolism of anandamide and related acyl-ethanolamides in ovaries of the sea urchin Paracentrotus lividus. Biochim Biophys Acta 1345:338–348

    Article  PubMed  Google Scholar 

  • Buchanan MM, Hutchinson M, Watkins LR, Yin H (2010) Toll-like receptor 4 in CNS pathologies. J Neurochem 114:13–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley CD, Gilroy DW, Serhan CN, Stockinger B, Tak PP (2013) The resolution of inflammation. Nat Rev Immunol 13:59–66

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    Article  CAS  PubMed  Google Scholar 

  • Bushell T (2007) The emergence of proteinase-activated receptor-2 as a novel target for the treatment of inflammation-related CNS disorders. J Physiol 581(Pt 1):7–16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calignano A, La Rana G, Giuffrida A, Piomelli D (1998) Control of pain initiation by endogenous cannabinoids. Nature 394:277–281

    Article  CAS  PubMed  Google Scholar 

  • Castanon N, Luheshi G, Layé S (2015) Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front Neurosci 9:229. doi:10.3389/fnins.2015.00229

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellheim A, Brekke OL, Espevik T, Harboe M, Mollnes TE (2009) Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol 69:479–491

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Kaushik DK, Gupta M, Basu A (2010) Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 88:1615–1631

    CAS  PubMed  Google Scholar 

  • Chessell IP, Hatcher JP, Bountra C, Michel AD, Hughes JP, Green P, Egerton J, Murfin M, Richardson J, Peck WL, Grahames CB, Casula MA, Yiangou Y, Birch R, Anand P, Buell GN (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

    Article  CAS  PubMed  Google Scholar 

  • Chew LJ, Takanohashi A, Bell M (2006) Microglia and inflammation: impact on developmental brain injuries. Ment Retard Dev Disabil Res Rev 12:105–112

    Article  PubMed  Google Scholar 

  • Cipriano M, Esposito G, Negro L, Capoccia E, Sarnelli G, Scuderi C, Filippis DD, Steardo L, Iuvone T (2015) Palmitoylethanolamide regulates production of pro-angiogenic mediators in a model of β amyloid-induced astrogliosis in vitro. CNS Neurol Disord Drug Targets 14:828–837

    Article  CAS  PubMed  Google Scholar 

  • Citraro R, Russo E, Scicchitano F, van Rijn CM, Cosco D, Avagliano C, Russo R, D’Agostino G, Petrosino S, Guida F, Gatta L, van Luijtelaar G, Maione S, Di Marzo V, Calignano A, De Sarro G (2013) Antiepileptic action of N-palmitoylethanolamine through CB1 and PPAR-α receptor activation in a genetic model of absence epilepsy. Neuropharmacology 69:115–126

    Article  CAS  PubMed  Google Scholar 

  • Cobellis L, Castaldi MA, Giordano V, Trabucco E, De Franciscis P, Torella M, Colacurci N (2011) Effectiveness of the association micronized N-Palmitoylethanolamine (PEA)-transpolydatin in the treatment of chronic pelvic pain related to endometriosis after laparoscopic assessment: a pilot study. Eur J Obstet Gynecol Reprod Biol 158:82–86

    Article  CAS  PubMed  Google Scholar 

  • Costa B, Conti S, Giagnoni G, Colleoni M (2002) Therapeutic effect of the endogenous fatty acid amide, palmitoylethanolamide, in rat acute inflammation: inhibition of nitric oxide and cyclo-oxygenase systems. Br J Pharmacol 137:413–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa B, Comelli F, Bettoni I, Colleoni M, Giagnoni G (2008) The endogenous fatty acid amide, palmitoylethanolamide, has anti-allodynic and anti-hyperalgesic effects in a murine model of neuropathic pain: involvement of CB1, TRPV1 and PPARγ receptors and neurotrophic factors. Pain 139:541–550

    Article  CAS  PubMed  Google Scholar 

  • Cravatt BF, Giang DK, Mayfield SP, Boger DL, Lerner RA, Gilula NB (1996) Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature 384:83–87

    Article  CAS  PubMed  Google Scholar 

  • Cunningham C (2013) Microglia and neurodegeneration: the role of systemic inflammation. Glia 61:71–90

    Article  PubMed  Google Scholar 

  • D’Agostino G, La Rana G, Russo R, Sasso O, Iacono A, Esposito E, Raso GM, Cuzzocrea S et al (2007) Acute intracerebroventricular administration of palmitoylethanolamide, an endogenous peroxisome proliferator-activated receptor-alpha agonist, modulates carrageenan-induced paw edema in mice. J Pharmacol Exp Ther 322:1137–1143

    Article  PubMed  CAS  Google Scholar 

  • D’Agostino G, La Rana G, Russo R, Sasso O, Iacono A, Esposito E, Mattace Raso G, Cuzzocrea S, Loverme J, Piomelli D, Meli R, Calignano A (2009) Central administration of palmitoylethanolamide reduces hyperalgesia in mice via inhibition of NF-κB nuclear signalling in dorsal root ganglia. Eur J Pharmacol 613:54–59

    Article  PubMed  CAS  Google Scholar 

  • De Filippis D, Luongo L, Cipriano M, Palazzo E, Cinelli MP, de Novellis V, Maione S, Iuvone T (2011) Palmitoylethanolamide reduces granuloma-induced hyperalgesia by modulation of mast cell activation in rats. Mol Pain 10:3. doi:10.1186/1744-8069-7-3

    Google Scholar 

  • De Petrocellis L, Davis JB, Di Marzo V (2001) Palmitoylethanolamide enhances anandamide stimulation of human vanilloid VR1 receptors. FEBS Lett 506:253–256

    Article  PubMed  Google Scholar 

  • DeLeo JA, Yezierski RP (2001) The role of neuroinflammation and neuroimmune activation in persistent pain. Pain 90:1–6

    Article  CAS  PubMed  Google Scholar 

  • Di Cesare ML, D’Agostino G, Pacini A, Russo R, Zanardelli M, Ghelardini C, Calignano A (2013) Palmitoylethanolamide is a disease-modifying agent in peripheral neuropathy: pain relief and neuroprotection share a PPAR-alpha-mediated mechanism. Mediators Inflamm 2013:328797. doi:10.1155/2013/328797

    Google Scholar 

  • Duranti A, Tontini A, Antonietti F, Vacondio F, Fioni A, Silva C, Lodola A, Rivara S, Solorzano C, Piomelli D, Tarzia G, Mor M (2012) N-(2-oxo-3-oxetanyl)carbamic acid esters as N-acylethanolamine acid amidase inhibitors: synthesis and structure-activity and structure-property relationships. J Med Chem 55:4824–4836

    Article  CAS  PubMed  Google Scholar 

  • El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD (2007) Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 13:432–438

    Article  PubMed  CAS  Google Scholar 

  • Esposito E, Impellizzeri D, Mazzon E, Paterniti I, Cuzzocrea S (2012) Neuroprotective activities of palmitoylethanolamide in an animal model of Parkinson’s disease. PLoS One 7(8):e41880. doi:10.1371/journal.pone.0041880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esposito E, Cordaro M, Cuzzocrea S (2014) Roles of fatty acid ethanolamides (FAE) in traumatic and ischemic brain injury. Pharmacol Res 86:26–31

    Article  CAS  PubMed  Google Scholar 

  • Facci L, Dal Toso R, Romanello S, Buriani A, Skaper SD, Leon A (1995) Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci USA 92:3376–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan R, Xu F, Previti ML, Davis J, Grande AM, Robinson JK, Van Nostrand WE (2007) Minocycline reduces microglial activation and improves behavioral deficits in a transgenic model of cerebral microvascular amyloid. J Neurosci 27:3057–3063

    Article  CAS  PubMed  Google Scholar 

  • Fidaleo M, Fanelli F, Ceru MP, Moreno S (2014) Neuroprotective properties of peroxisome proliferator-activated receptor alpha (PPARα) and its lipid ligands. Curr Med Chem 21:2803–2821

    Article  CAS  PubMed  Google Scholar 

  • Filbin MT (2003) Myelin-associated inhibitors of axonal regeneration in the adult mammalian CNS. Nat Rev Neurosci 4:703–713

    Article  CAS  PubMed  Google Scholar 

  • Franklin A, Parmentier-Batteur S, Walter L, Greenberg DA, Stella N (2003) Palmitoylethanolamide increases after focal cerebral ischemia and potentiates microglial cell motility. J Neurosci 23:7767–7775

    CAS  PubMed  Google Scholar 

  • Freeman LC, Ting JP (2015) The pathogenic role of the inflammasome in neurodegenerative diseases. J Neurochem. doi:10.1111/jnc.13217

    PubMed Central  Google Scholar 

  • Gasque P, Singhrao SK, Neal JW, Götze O, Morgan BP (1997) Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am J Pathol 150:31–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gauchat JF, Henchoz S, Mazzei G, Aubry JP, Brunner T, Blasey H, Life P, Talabot D, Flores-Romo L, Thompson J, Kishi K, Butterfield J, Dahinden C, Bonnefoy J-Y (1993) Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365:340–343

    Article  CAS  PubMed  Google Scholar 

  • Gellera C, Colombrita C, Ticozzi N, Castellotti B, Bragato C, Ratti A, Taroni F, Silani V (2008) Identification of new ANG gene mutations in a large cohort of Italian patients with amyotrophic lateral sclerosis. Neurogenetics 9:33–40

    Article  CAS  PubMed  Google Scholar 

  • Ghafouri N, Ghafouri B, Larsson B, Stensson N, Fowler CJ, Gerdle B (2013) Palmitoylethanolamide and stearoylethanolamide levels in the interstitium of the trapezius muscle of women with chronic widespread pain and chronic neck-shoulder pain correlate with pain intensity and sensitivity. Pain 154:1649–1658

    Article  CAS  PubMed  Google Scholar 

  • Gordon JR, Galli SJ (1991) Release of both preformed and newly synthesized tumor necrosis factor alpha (TNF-alpha)/cachectin by mouse mast cells stimulated via the Fc epsilon RI. A mechanism for the sustained action of mast cell-derived TNF-alpha during IgE-dependent biological responses. J Exp Med 174:103–107

    Article  CAS  PubMed  Google Scholar 

  • Gosselin RD, Suter MR, Ji RR, Decosterd I (2010) Glial cells and chronic pain. Neuroscientist 16:519–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grathwohl SA, Kälin RE, Bolmont T, Prokop S, Winkelmann G, Kaeser SA, Odenthal J, Radde R, Eldh T, Gandy S, Aguzzi A, Staufenbiel M, Mathews PM, Wolburg H, Heppner FL, Jucker M (2009) Formation and maintenance of Alzheimer’s disease β-amyloid plaques in the absence of microglia. Nat Neurosci 12:1361–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin RS, Costigan M, Brenner GJ, Ma CH, Scholz J, Moss A, Allchorne AJ, Stahl GL et al (2007) Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci 27:8699–8708

    Article  CAS  PubMed  Google Scholar 

  • Hanisch U-K, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10:1387–1394

    Article  CAS  PubMed  Google Scholar 

  • Harcha PA, Vargas A, Yi C, Koulakoff AA, Giaume C, Sáez JC (2015) Hemichannels are required for amyloid β-peptide-induced degranulation and are activated in brain mast cells of APPswe/PS1dE9 mice. J Neurosci 35:9526–9538

    Article  CAS  PubMed  Google Scholar 

  • Hayashi R, Xiao W, Kawamato M, Yuge O, Bennett GJ (2011) Systemic glucocorticoid therapy reduces pain and the number of endoneurial tumor necrosis factor-alpha (TNFα)-positive mast cells in rats with a painful peripheral neuropathy. J Pharmacol Sci 106:559–565

    Article  CAS  Google Scholar 

  • Hesselink JM, Hekker TA (2012) Therapeutic utility of palmitoylethanolamide in the treatment of neuropathic pain associated with various pathological conditions: a case series. J Pain Res 5:437–442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoyer FF, Khoury M, Slomka H, Kebschull M, Lerner R, Lutz B, Schott H, Lütjohann D, Wojtalla A, Becker A, Zimmer A, Nickenig G (2014) Inhibition of endocannabinoid-degrading enzyme fatty acid amide hydrolase increases atherosclerotic plaque vulnerability in mice. J Mol Cell Cardiol 66:126–1232

    Article  CAS  PubMed  Google Scholar 

  • Iadecola C, Anrather J (2011) The immunology of stroke: from mechanisms to translation. Nat Med 17:796–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai F, Suzuki H, Oda J, Ninomiya T, Ono K, Sano H, Sawada M (2007) Neuroprotective effect of exogenous microglia in global brain ischemia. J Cereb Blood Flow Metab 27:488–500

    Article  CAS  PubMed  Google Scholar 

  • Iuvone T, Affaitati G, De Filippis D, Lopopolo M, Grassia G, Lapenna D, Negro L, Costantini R, Vaia M, Cipollone F, Ialenti A, Giamberardino MA (2015) Ultramicronized palmitoylethanolamide reduce viscero-visceral hyperalgesia in a rat model of endometriosis plus ureteral calculosis: role of mast cells. Pain. doi:10.1097/j.pain.0000000000000220

    Google Scholar 

  • Jaggar SI, Hasnie FS, Sellaturay S, Rice AS (1998) The antihyperalgesic actions of the cannabinoid anandamide and the putative CB2 receptor agonist palmitoylethanolamide in visceral and somatic inflammatory pain. Pain 76:189–199

    Article  CAS  PubMed  Google Scholar 

  • Jhaveri MD, Richardson D, Robinson I, Garle MJ, Patel A, Sun Y, Sagar DR, Bennett AJ, Alexander SP, Kendall DA, Barrett DA, Chapman V (2008) Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain. Neuropharmacology 55:85–93

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Silverman AJ, Vannucci SJ (2007) Mast cell stabilization limits hypoxic-ischemic brain damage in the immature rat. Dev Neurosci 29:373–384

    Article  CAS  PubMed  Google Scholar 

  • Jin Y, Silverman AJ, Vannucci SJ (2009) Mast cells are early responders after hypoxia-ischemia in immature rat brain. Stroke 40:3107–3112

    Article  CAS  PubMed  Google Scholar 

  • Juremalm M, Hjertson M, Olsson N, Harvima I, Nilsson K, Nilsson G (2000) The chemokine receptor CXCR4 is expressed within the mast cell lineage and its ligand stromal cell-derived factor-1alpha acts as a mast cell chemotaxin. Eur J Immunol 30:3614–3622

    Article  CAS  PubMed  Google Scholar 

  • Kim SU, de Vellis J (2005) Microglia in health and disease. J Neurosci Res 81:302–313

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Kim SU, Oh U, Jin BK (2006) Transient receptor potential vanilloid subtype 1 mediates microglial cell death in vivo and in vitro via Ca2+-mediated mitochondrial damage and cytochrome c release. J Immunol 177:4322–4329

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Kim MA, Cho IH, Kim MS, Lee S, Jo EK, Choi SY, Park K, Kim JS, Akira S, Na HS, Oh SB, Lee SJ (2007) A critical role of toll-like receptor 2 in nerve injury-induced spinal cord glial cell activation and pain hypersensitivity. J Biol Chem 282:14975–14983

    Article  CAS  PubMed  Google Scholar 

  • Kim DY, Hong GU, Ro JY (2011) Signal pathways in astrocytes activated by cross-talk between of astrocytes and mast cells through CD40-CD40L. J Neuroinflammation 8:25. doi:10.1186/1742-2094-8-25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius R, Mehdorn HM, Held-Feindt J (2011) Spatiotemporal CCR1, CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain. J Neurosurg Spine 14:583–597

    Article  PubMed  Google Scholar 

  • Koda H, Mizumura K (2002) Sensitization to mechanical stimulation by inflammatory mediators and by mild burn in canine visceral nociceptors in vitro. J Neurophysiol 87:2043–2051

    Article  PubMed  Google Scholar 

  • Kotter MR, Zhao C, van Rooijen N, Franklin RJM (2005) Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 18:166–175

    Article  CAS  PubMed  Google Scholar 

  • Kulka M, Fukuishi N, Metcalfe DD (2009) Human mast cells synthesize and release angiogenin, a member of the ribonuclease A (RNase A) superfamily. J Leukoc Biol 86:1217–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J (2007) Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 27:2596–2605

    Article  PubMed  CAS  Google Scholar 

  • Leal-Berumen I, Conlon P, Marshall JS (1994) IL-6 production by rat peritoneal mast cells is not necessarily preceded by histamine release and can be induced by bacterial lipopolysaccharide. J Immunol 152:5468–5476

    CAS  PubMed  Google Scholar 

  • Leon A, Buriani A, Dal Toso R, Fabris M, Romanello S, Aloe L, Levi-Montalcini R (1994) Mast cells synthesize, store, and release nerve growth factor. Proc Natl Acad Sci USA 91:3739–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung D, Saghatelian A, Simon GM, Cravatt BF (2006) Inactivation of N-acyl phosphatidylethanolamine phospholipase D reveals multiple mechanisms for the biosynthesis of endocannabinoids. Biochemistry 45:4720–4726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy D, Kainz V, Burstein R, Strassman AM (2012) Mast cell degranulation distinctly activates trigemino-cervical and lumbosacral pain pathways and elicits widespread tactile pain hypersensitivity. Brain Behav Immun 26:311–317

    Article  PubMed  Google Scholar 

  • Li Y, Yang L, Chen L, Zhu C, Huang R, Zheng X, Qiu Y, Fu J (2012) Design and synthesis of potent N-acylethanolamine-hydrolyzing acid amidase (NAAA) inhibitor as anti-inflammatory compounds. PLoS One 7(8):e43023. doi:10.1371/journal.pone.0043023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsberg PJ, Strbian D, Karjalainen-Lindsberg ML (2010) Mast cells as early responders in the regulation of acute blood-brain barrier changes after cerebral ischemia and hemorrhage. J Cereb Blood Flow Metab 30:689–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rübe CE, Walter J et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid β-peptide to trigger neuroinflammatory activation. J Immunol 188:1098–1107

    Article  CAS  PubMed  Google Scholar 

  • Lo Monte G, Soave I, Marci R (2013) Administration of micronized palmitoylethanolamide (PEA)-transpolydatin in the treatment of chronic pelvic pain in women affected by endometriosis: preliminary results. Minerva Ginecol 65:453–463. [Italian]

    CAS  PubMed  Google Scholar 

  • Lo Verme J, Fu J, Astarita G, La Rana G, Russo R, Calignano A, Piomelli D (2005) The nuclear receptor peroxisome proliferator-activated receptor-alpha mediates the anti-inflammatory actions of palmitoylethanolamide. Mol Pharmacol 67:15–19

    Article  CAS  PubMed  Google Scholar 

  • Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7:354–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luongo L, Guida F, Boccella S, Bellini G, Gatta L, Rossi F, de Novellis V, Maione S (2013) Palmitoylethanolamide reduces formalin-induced neuropathic-like behaviour through spinal glial/microglial phenotypical changes in mice. CNS Neurol Disord Drug Targets 12:45–54

    Article  CAS  PubMed  Google Scholar 

  • Matias I, Bisogno T, Melck D, Vandenbulcke F, Verger-Bocquet M, De Petrocellis L, Sergheraert C, Breton C, Di Marzo V, Salzet M (2001) Evidence for an endocannabinoid system in the central nervous system of the leech Hirudo medicinalis. Mol Brain Res 87:145–159

    Article  CAS  PubMed  Google Scholar 

  • Mattace Raso G, Russo R, Calignano A, Meli R (2014) Palmitoylethanolamide in CNS health and disease. Pharmacol Res 86:32–41

    Article  CAS  PubMed  Google Scholar 

  • Mattila OS, Strbian D, Saksi J, Pikkarainen TO, Rantanen V, Tatlisumak T, Lindsberg PJ (2011) Cerebral mast cells mediate blood-brain barrier disruption in acute experimental ischemic stroke through perivascular gelatinase activation. Stroke 42:3600–3605

    Article  CAS  PubMed  Google Scholar 

  • Mazzari S, Canella R, Petrelli L, Marcolongo G, Leon L (1996) N-(2-hydroxyethyl)hexadecanamide is orally active in reducing edema formation and inflammatory hyperalgesia by downmodulating mast cell activation. Eur J Pharmacol 300:227–236

    Article  CAS  PubMed  Google Scholar 

  • McGeer PL, McGeer EG (2013) The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy. Acta Neuropathol 126:479–497

    Article  CAS  PubMed  Google Scholar 

  • Mika J (2008) Modulation of microglia can attenuate neuropathic pain symptoms and enhance morphine tolerance. Pharmacol Rep 60:297–307

    CAS  PubMed  Google Scholar 

  • Muccioli GG, Stella N (2008) Microglia produce and hydrolyze palmitoylethanolamide. Neuropharmacology 54:16–22

    Article  CAS  PubMed  Google Scholar 

  • Myers RR, Campana WM, Shubayev VI (2006) The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today 11:8–20

    Article  CAS  PubMed  Google Scholar 

  • Najjar S, Pearlman DM, Alper K, Najjar A, Devinsky O (2013) Neuroinflammation and psychiatric illness. J Neuroinflammation 10:43. doi:10.1186/1742-2094-10-43

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140:871–882

    Article  CAS  PubMed  Google Scholar 

  • Nautiyal KM, Dailey CA, Jahn JL, Rodriquez E, Son NH, Sweedler JV, Silver R (2012) Serotonin of mast cell origin contributes to hippocampal function. Eur J Neurosci 36:2347–2359

    Article  PubMed  PubMed Central  Google Scholar 

  • Noriega DB, Savelkoul HF (2014) Immune dysregulation in autism spectrum disorder. Eur J Pediatr 173:33–43

    Article  CAS  PubMed  Google Scholar 

  • Oliveira SM, Drewes CC, Silva CR, Trevisan G, Boschen SL, Moreira CG, de Almeida Cabrini D, Da Cunha C, Ferreira J (2011) Involvement of mast cells in a mouse model of postoperative pain. Eur J Pharmacol 672:88–95

    Article  CAS  PubMed  Google Scholar 

  • Orinska Z, Bulanova E, Budagian V, Metz M, Maurer M, Bulfone-Paus S (2005) TLR3-induced activation of mast cells modulates CD8+ T-cell recruitment. Blood 106:978–987

    Article  CAS  PubMed  Google Scholar 

  • Osipchuk Y, Cahalan M (1992) Cell-to-cell spread of calcium signals mediated by ATP receptors in mast cells. Nature 359:241–244

    Article  CAS  PubMed  Google Scholar 

  • Pacher P, Bátkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paladini A, Fusco M, Cenacchi T, Schievano C, Piroli A, Varrassi G (2016) Palmitoylethanolamide, a special food for medical purposes, in the treatment of chronic pain: a pooled data meta-analysis. Pain Physician 19(2):11–24

    PubMed  Google Scholar 

  • Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–1458

    Article  CAS  PubMed  Google Scholar 

  • Petrosino S, Palazzo E, de Novellis V, Bisogno T, Rossi F, Maione S, Di Marzo V (2007) Changes in spinal and supraspinal endocannabinoid levels in neuropathic rats. Neuropharmacology 52:415–422

    Article  CAS  PubMed  Google Scholar 

  • Pietrzak A, Wierzbicki M, Wiktorska M, Brzezińska-Błaszczyk E (2011) Surface TLR2 and TLR4 expression on mature rat mast cells can be affected by some bacterial components and proinflammatory cytokines. Mediators Inflamm 2011:427473. doi:10.1155/2011/427473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Piomelli D, Sasso O (2014) Peripheral gating of pain signals by endogenous lipid mediators. Nat Neurosci 17:164–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman IA, Tsuboi K, Uyama T, Ueda N (2014) New players in the fatty acyl ethanolamide metabolism. Pharmacol Res 86:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ralay Ranaivo H, Craft JM, Hu W, Guo L, Wing LK, Van Eldik LJ, Watterson DM (2006) Glia as a therapeutic target: selective suppression of human amyloid-beta-induced upregulation of brain proinflammatory cytokine production attenuates neurodegeneration. J Neurosci 26:662–670

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro Xavier AL, Kress BT, Goldman SA, Lacerda de Menezes JR, Nedergaard M (2015) A distinct population of microglia supports adult neurogenesis in the subventricular zone. J Neurosci 35:11848–11861

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro A, Pontis S, Mengatto L, Armirotti A, Chiurchiù V, Capurro V, Fiasella A, Nuzzi A, Romeo E, Moreno-Sanz G, Maccarrone M, Reggiani A, Tarzia G, Mor M, Bertozzi F, Bandiera T, Piomelli D (2015) A potent systemically active N-acylethanolamine acid amidase inhibitor that suppresses inflammation and human macrophage activation. ACS Chem Biol 10:1838–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivat C, Becker C, Blugeot A, Zeau B, Mauborgne A, Pohl M, Benoliel JJ (2010) Chronic stress induces transient spinal neuroinflammation, triggering sensory hypersensitivity and long-lasting anxiety-induced hyperalgesia. Pain 150:358–368

    Article  PubMed  Google Scholar 

  • Rivera P, Bindila L, Pastor A, Pérez-Martín M, Pavón FJ, Serrano A, de la Torre R, Lutz B, Rodríguez de Fonseca F, Suárez J (2015) Pharmacological blockade of the fatty acid amide hydrolase (FAAH) alters neural proliferation, apoptosis and gliosis in the rat hippocampus, hypothalamus and striatum in a negative energy context. Front Cell Neurosci 9:98. doi:10.3389/fncel.2015.00098

    PubMed  PubMed Central  Google Scholar 

  • Sasso O, Moreno-Sanz G, Martucci C, Realini N, Dionisi M, Mengatto L, Duranti A, Tarozzo G, Tarzia G, Mor M, Bertorelli R, Reggiani A, Piomelli D (2013) Antinociceptive effects of the N-acylethanolamine acid amidase inhibitor ARN077 in rodent pain models. Pain 154:350–360

    Article  CAS  PubMed  Google Scholar 

  • Saturnino C, Petrosino S, Ligresti A, Palladino C, De Martino G, Bisogno T, Di Marzo V (2010) Synthesis and biological evaluation of new potential inhibitors of N-acylethanolamine hydrolyzing acid amidase. Bioorg Med Chem Lett 20:1210–1213

    Article  CAS  PubMed  Google Scholar 

  • Scuderi C, Esposito G, Blasio A, Valenza M, Arietti P, Steardo L Jr, Carnuccio R, De Filippis D, Petrosino S, Iuvone T, Di Marzo V, Steardo L (2011) Palmitoylethanolamide counteracts reactive astrogliosis induced by β-amyloid peptide. J Cell Mol Med 15:2664–2674

    Google Scholar 

  • Sepe N, De Petrocellis L, Montanaro F, Cimino G, Di Marzo V (1998) Bioactive long chain N-acylethanolamines in five species of edible bivalve molluscs. Possible implications for mollusc physiology and sea food industry. Biochim Biophys Acta 1389:101–111

    Article  CAS  PubMed  Google Scholar 

  • Siegmund SV, Wojtalla A, Schlosser M, Zimmer A, Singer MV (2013) Fatty acid amide hydrolase but not monoacyl glycerol lipase controls cell death induced by the endocannabinoid 2-arachidonoyl glycerol in hepatic cell populations. BiochemBiophys Res Commun 437:48–54

    Article  CAS  Google Scholar 

  • Silver R, Curley JP (2013) Mast cells on the mind: new insights and opportunities. Trends Neurosci 36:513–521

    Article  CAS  PubMed  Google Scholar 

  • Skaper SD, Facci L (2012) Mast cell-glia axis in neuroinflammation and therapeutic potential of the anandamide congener palmitoylethanolamide. Philos Trans R Soc Lond B Biol Sci 367:3312–3325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skaper SD, Buriani A, Dal Toso R, Petrelli L, Romanello S, Facci L, Leon A (1996) The ALIAmide palmitoylethanolamide and cannabinoids, but not anandamide, are protective in a delayed postglutamate paradigm of excitotoxic death in cerebellar granule neurons. Proc Natl Acad Sci USA 93:3984–3989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skaper SD, Giusti P, Facci L (2012) Microglia and mast cells: two tracks on the road to neuroinflammation. FASEB J 26:3103–3117

    Article  CAS  PubMed  Google Scholar 

  • Skaper SD, Facci L, Fusco M, Della Valle MF, Zusso M, Costa B, Giusti P (2014a) Palmitoylethanolamide, a naturally occurring disease-modifying agent in neuropathic pain. Inflammopharmacology 22:79–94

    Article  CAS  PubMed  Google Scholar 

  • Skaper SD, Facci L, Giusti P (2014b) Mast cells, glia and neuroinflammation: partners in crime? Immunology 141:314–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skaper SD, Facci L, Barbierato M, Zusso M, Bruschetta G, Impellizzeri D, Cuzzocrea S, Giusti P (2015) N-Palmitoylethanolamine and neuroinflammation: a novel therapeutic strategy of resolution. Mol Neurobiol 52:1034–1042

    Article  CAS  PubMed  Google Scholar 

  • Skuljec J, Sun H, Pul R, Bénardais K, Ragancokova D, Moharregh-Khiabani D, Kotsiari A, Trebst C et al (2011) CCL5 induces a pro-inflammatory profile in microglia in vitro. Cell Immunol 270:164–171

    Article  CAS  PubMed  Google Scholar 

  • Smart D, Jonsson KO, Vandevoorde S, Lambert DM, Fowler CJ (2002) ‘Entourage’ effects of N-acyl ethanolamines at human vanilloid receptors. Comparison of effects upon anandamide-induced vanilloid receptor activation and upon anandamide metabolism. Brit J Pharmacol 136:452–458

    Article  CAS  Google Scholar 

  • Solorzano C, Zhu C, Battista N, Astarita G, Lodola A, Rivara S, Mor M, Russo R, Maccarrone M, Antonietti F, Duranti A, Tontini A, Cuzzocrea S, Tarzia G, Piomelli D (2009) Selective N-acylethanolamine-hydrolyzing acid amidase inhibition reveals a key role for endogenous palmitoylethanolamide in inflammation. Proc Natl Acad Sci USA 106:20966–20971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song M, Jin J, Lim JE, Kou J, Pattanayak A, Rehman JA, Kim HD, Tahara K, Lalonde R, Fukuchi K (2011) TLR4 mutation reduces microglial activation, increases Aβ deposits and exacerbates cognitive deficits in a mouse model of Alzheimer’s disease. J Neuroinflammation 8:92. doi:10.1186/1742-2094-8-92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soruri A, Grigat J, Kiafard Z, Zwirner J (2008) Mast cell activation is characterized by upregulation of a functional anaphylatoxin C5a receptor. BMC Immunol 9:29. doi:10.1186/1471-2172-9-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Strbian D, Karjalainen-Lindsberg ML, Kovanen PT, Tatlisumak T, Lindsberg PJ (2007) Mast cell stabilization reduces hemorrhage formation and mortality after administration of thrombolytics in experimental ischemic stroke. Circulation 116:411–418

    Article  CAS  PubMed  Google Scholar 

  • Subramanian V, Crabtree B, Acharya KR (2008) Human angiogenin is a neuroprotective factor and amyotrophic lateral sclerosis associated angiogenin variants affect neurite extension/pathfinding and survival of motor neurons. Hum Mol Genet 17:130–149

    Article  CAS  PubMed  Google Scholar 

  • Suk K, Ock J (2011) Chemical genetics of neuroinflammation: natural and synthetic compounds as microglial inhibitors. Inflammopharmacology 20:151–158

    Article  PubMed  CAS  Google Scholar 

  • Tanga FY, Nutile-McMenemy N, DeLeo JA (2005) The CNS role of Toll-like receptor 4 in innate neuroimmunity and painful neuropathy. Proc Natl Acad Sci USA 102:5856–58561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thacker MA, Clark AK, Marchand F, McMahon SB (2007) Pathophysiology of peripheral neuropathic pain: immune cells and molecules. Anesth Analg 105:838–847

    Article  PubMed  Google Scholar 

  • Theoharides TC, Stewart JM, Hatziagelaki E, Kolaitis G (2015a) Brain “fog,” inflammation and obesity: key aspects of neuropsychiatric disorders improved by luteolin. Front Neurosci. 9:225. doi:10.3389/fnins.2015.00225

    Article  PubMed  PubMed Central  Google Scholar 

  • Theoharides TC, Stewart JM, Panagiotidou S, Melamed I (2015b) Mast cells, brain inflammation and autism. Eur J Pharmacol. doi:10.1016/j.ejphar.2015.03.086

    PubMed  Google Scholar 

  • Trang T, Beggs S, Wan X, Salter MW (2009) P2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen-activated protein kinase activation. J Neurosci 29:3518–3528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuboi K, Takezaki N, Ueda N (2007) The N-acylethanolamine-hydrolyzing acid amidase (NAAA). Chem Biodivers 4:1914–1925

    Article  CAS  PubMed  Google Scholar 

  • Tsuda M, Kuboyama K, Inoue T, Nagata K, Tozaki-Saitoh H, Inoue K (2009) Behavioral phenotypes of mice lacking purinergic P2X4 receptors in acute and chronic pain assays. Mol Pain 5:28. doi:10.1186/1744-8069-5-28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ueda N, Tsuboi K, Uyama T (2013) Metabolism of endocannabinoids and related N-acylethanolamines: Canonical and alternative pathways. FEBS J 280:1874–1894

    Article  CAS  PubMed  Google Scholar 

  • Vinet J, van Weering HR, Heinrich A, Kälin RE, Wegner A, Brouwer N, Heppner FL, van Rooijen N, Boddeke HW, Biber K (2012) Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflammation 9:27. doi:10.1186/1742-2094-9-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale R, Ottonello G, Petracca R, Bertozzi SM, Ponzano S, Armirotti A, Berteotti A, Dionisi M, Cavalli A, Piomelli D, Bandiera T, Bertozzi F (2014) Synthesis, structure-activity, and structure-stability relationships of 2-substituted-N-(4-oxo-3-oxetanyl) N-acylethanolamine acid amidase (NAAA) inhibitors. ChemMedChem 9:323–336

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang X, Zhao L, Ma W, Rodriguez IR, Fariss RN, Wong WT (2014) Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci 34:3793–3806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wardlaw AJ, Moqbel R, Cromwell O, Kay AB (1986) Platelet-activating factor. A potent chemotactic and chemokinetic factor for human eosinophils. J Clin Invest 78:1701–1706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei F, Dubner R, Ren K (2007) Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci 27:6006–6018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weller K, Foitzik K, Paus R, Syska W, Maurer M (2006) Mast cells are required for normal healing of skin wounds in mice. FASEB J 20:2366–2368

    Article  CAS  PubMed  Google Scholar 

  • Wood D (2011) Visceral pain: spinal afferents, enteric mast cells, enteric nervous system and stress. Curr Pharm Des 17:1573–1575

    Article  CAS  PubMed  Google Scholar 

  • Xanthos DN, Gaderer S, Drdla R, Nuro E, Abramova A, Ellmeier W, Sandkühler J (2011) Central nervous system mast cells in peripheral inflammatory nociception. Mol Pain 7:42. doi:10.1186/1744-8069-7-42

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamano Y, Tsuboi K, Hozaki Y, Takahashi K, Jin XH, Ueda N, Wada A (2012) Lipophilic amines as potent inhibitors of N-acylethanolamine-hydrolyzing acid amidase. Bioorg Med Chem 20:3658–3665

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Wei J, Zhang H, Song W, Wei W, Zhang L, Qian K, He S (2010) Upregulation of Toll-like receptor (TLR) expression and release of cytokines from mast cells by IL-12. Cell Physiol Biochem 26:337–346

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Li L, Chen L, Li Y, Chen H, Li Y, Ji G, Lin D, Liu Z, Qiu Y (2015) Potential analgesic effects of a novel N-acylethanolamine acid amidase inhibitor F96 through PPAR-α. Sci Rep 5:13565. doi:10.1038/srep13565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Lin L, Yang H, Zhang Z, Yang X, Zhang L, He S (2010a) Induction of IL-13 production and upregulation of gene expression of protease activated receptors in P815 cells by IL-6. Cytokine 50:138–145

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Yang H, He S (2010b) TNF increases expression of IL-4 and PARs in mast cells. Cell Physiol Biochem 26:327–336

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Zeng X, Yang H, Hu G, He S (2012) Mast cell tryptase induces microglia activation via protease-activated receptor 2 signaling. Cell Physiol Biochem 29:931–940

    Article  PubMed  CAS  Google Scholar 

  • Zuo Y, Perkins NM, Tracey DJ, Geczy CL (2003) Inflammation and hyperalgesia induced by nerve injury in the rat: a key role of mast cells. Pain 105:467–479

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by MIUR, PON “Ricerca e Competitività 2007–2013” project PON01_02512 and by Regione Veneto project protocol 103173COF/14/LR52001C2/000051.

Conflict of Interest

The authors report no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen D. Skaper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Skaper, S.D. (2017). Mast Cells and Glia as Targets for the Anandamide Congener Palmitoylethanolamide: an Anti-inflammatory and Neuroprotective Lipid Signaling Molecule. In: Melis, M. (eds) Endocannabinoids and Lipid Mediators in Brain Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-57371-7_12

Download citation

Publish with us

Policies and ethics