Skip to main content

Advertisement

Log in

Downstream mRNA Target Analysis in Neonatal Hypoxic-Ischaemic Encephalopathy Identifies Novel Marker of Severe Injury: a Proof of Concept Paper

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Human microRNA miR-374a is downregulated in the umbilical cord blood (UCB) of infants with hypoxic-ischaemic encephalopathy (HIE). The downstream targets of this microRNA (miRNA) are unclear, but one putative target is the activin-A receptor type IIb (ACVR2B). ACVR2B is required for activin-A function and previous reports have shown alterations of activin-A levels in neonatal HIE. Our aim was to investigate the expression of the potential downstream targets of miR-374a, activin-A and ACVR2B, at birth in a cohort of full-term infants with perinatal asphyxia (PA) only, and those with PA who developed clinical and electrographic HIE. UCB was drawn and processed immediately after delivery. Levels of serum activin-A were measured using ELISA. mRNA levels of ACVR2B in whole blood were quantified using qRT-PCR. Outcome was assessed at 3 years of age using standardised developmental assessment. In total, 171 infants were enrolled: 88 healthy controls, 56 PA and 27 HIE. A statistically significant elevation of median (IQR) ACVR2B was detected in infants with severe HIE compared to moderate/mild HIE, PA and control groups (3.3 (2.94–3.67) vs. 0.91 (0.55–1.21) vs. 0.88 (0.57–1.38) vs. 0.84 (0.74–1.24), p values = 0.04, 0.027 and 0.025, respectively). Although serum activin-A levels were elevated in infants with severe HIE, this elevation did not reach significance. ACVR2B may be a potential novel marker of HIE severity. This is the first study to examine the relationship between activin-A, its receptor AVCR2B and potentially upstream miRNA miR-374a in a cohort of carefully categorised and phenotyped infants. We have shown that miRNA analysis, combined with downstream target exploration, may yield novel biomarkers for the prediction of HIE severity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lawn JE, Cousens S, Zupan J (2005) 4 million neonatal deaths: when? Where? Why? Lancet 365(9462):891–900

    Article  PubMed  Google Scholar 

  2. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E et al (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361(14):1349–1358

    Article  CAS  PubMed  Google Scholar 

  3. Looney A-M, Walsh BH, Moloney G, Grenham S, Fagan A, O'Keeffe GW, et al. 2015 Downregulation of umbilical cord blood levels of miR-374a in neonatal hypoxic ischemic encephalopathy. The Journal of pediatrics

  4. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  5. Xia Y, Schneyer AL (2009) The biology of activin: recent advances in structure, regulation and function. J Endocrinol 202(1):1–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Florio P, Frigiola A, Battista R, Abdalla AH, Gazzolo D, Galleri L et al (2009) Activin A in asphyxiated full-term newborns with hypoxic ischemic encephalopathy. Frontiers in bioscience (Elite edition) 2:36–42

    Google Scholar 

  7. Florio P, Luisi S, Bruschettini M, Grutzfeld D, Dobrzanska A, Bruschettini P et al (2004) Cerebrospinal fluid activin a measurement in asphyxiated full-term newborns predicts hypoxic ischemic encephalopathy. Clin Chem 50(12):2386–2389

    Article  CAS  PubMed  Google Scholar 

  8. Florio P, Luisi S, Moataza B, Torricelli M, Iman I, Hala M et al (2007) High urinary concentrations of activin A in asphyxiated full-term newborns with moderate or severe hypoxic ischemic encephalopathy. Clin Chem 53(3):520–522

    Article  CAS  PubMed  Google Scholar 

  9. Lai M, Sirimanne E, Williams C, Gluckman P (1996) Sequential patterns of inhibin subunit gene expression following hypoxic-ischemic injury in the rat brain. Neuroscience 70(4):1013–1024

    Article  CAS  PubMed  Google Scholar 

  10. Wu DD, Lai M, Hughes PE, Sirimanne E, Gluckman PD, Williams CE (1999) Expression of the activin axis and neuronal rescue effects of recombinant activin A following hypoxic-ischemic brain injury in the infant rat. Brain Res 835(2):369–378

    Article  CAS  PubMed  Google Scholar 

  11. Phillips DJ, Nguyen P, Adamides AA, Bye N, Rosenfeld JV, Kossmann T et al (2006) Activin a release into cerebrospinal fluid in a subset of patients with severe traumatic brain injury. J Neurotrauma 23(9):1283–1294

    Article  PubMed  Google Scholar 

  12. Looney A-M, Ahearne C, Boylan GB, Murray DM (2015) Glial fibrillary acidic protein is not an early marker of injury in perinatal asphyxia and hypoxic ischaemic encephalopathy. Frontiers in Neurology. 6

  13. Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108

    Article  CAS  PubMed  Google Scholar 

  14. Cheng L, Doecke J, Sharples R, Villemagne V, Fowler C, Rembach A, et al. (2014) Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Molecular psychiatry

  15. Etheridge A, Lee I, Hood L, Galas D, Wang K (2011) Extracellular microRNA: a new source of biomarkers. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 717(1):85–90

    Article  CAS  PubMed  Google Scholar 

  16. Mishra PJ (2014) MicroRNAs as promising biomarkers in cancer diagnostics. Biomark Res 2:19

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences. 105(30):10513–8

  18. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA. Org resource: targets and expression. Nucleic Acids Res 36(suppl 1):D149–DD53

    CAS  PubMed  Google Scholar 

  19. Kozomara A, Griffiths-Jones S (2013) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic acids research. gkt1181

  20. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  PubMed  Google Scholar 

  21. Carroll AP, Tooney PA, Cairns MJ (2013) Design and interpretation of microRNA-reporter gene activity. Anal Biochem 437(2):164–171

    Article  CAS  PubMed  Google Scholar 

  22. Lee SJ, Reed LA, Davies MV, Girgenrath S, Goad ME, Tomkinson KN, et al. 2005 Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proceedings of the National Academy of Sciences of the United States of America. 102(50):18117–22.

  23. Gao F, Kishida T, Ejima A, Gojo S, Mazda O (2013) Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells. Biochem Biophys Res Commun 431(2):309–314

    Article  CAS  PubMed  Google Scholar 

  24. Koszinowski S, Buss K, Kaehlcke K, Krieglstein K (2015) Signaling via the transcriptionally regulated activin receptor 2B is a novel mediator of neuronal cell death during chicken ciliary ganglion development. Int J Dev Neurosci 41:98–104

    Article  CAS  PubMed  Google Scholar 

  25. Thulluru H, Michel O, Oudejans C, van Dijk M (2015) ACVR2A promoter polymorphism rs1424954 in the activin-A signaling pathway in trophoblasts. Placenta 36(4):345–349

    Article  CAS  PubMed  Google Scholar 

  26. Luisi S, Florio P, Reis FM, Petraglia F (2001) Expression and secretion of activin A: possible physiological and clinical implications. Eur J Endocrinol 145(3):225–236

    Article  CAS  PubMed  Google Scholar 

  27. Phillips DJ, Jones KL, Scheerlinck J-PY, Hedger MP, de Kretser DM (2001) Evidence for activin A and follistatin involvement in the systemic inflammatory response. Mol Cell Endocrinol 180(1):155–162

    Article  CAS  PubMed  Google Scholar 

  28. Tessier C, Prigent-Tessier A, Bao L, Telleria CM, Ferguson-Gottschall S, Gibori GB et al (2003) Decidual activin: its role in the apoptotic process and its regulation by prolactin. Biol Reprod 68(5):1687–1694

    Article  CAS  PubMed  Google Scholar 

  29. Florio P, Abella RF, de la Torre T, Giamberti A, Luisi S, Butera G et al (2007) Perioperative activin A concentrations as a predictive marker of neurologic abnormalities in children after open heart surgery. Clin Chem 53(5):982–985

    Article  CAS  PubMed  Google Scholar 

  30. Gagne-Loranger M, Sheppard M, Ali N, Saint-Martin C, Wintermark P 2015 Newborns referred for therapeutic hypothermia: association between initial degree of encephalopathy and severity of brain injury (what about the newborns with mild encephalopathy on admission?). American journal of perinatology

  31. Aleman-Muench G, Soldevila G (2012) When versatility matters: activins/inhibins as key regulators of immunity. Immunol Cell Biol 90(2):137–148

    Article  CAS  PubMed  Google Scholar 

  32. Sugama S, Takenouchi T, Kitani H, Fujita M, Hashimoto M (2007) Activin as an anti-inflammatory cytokine produced by microglia. J Neuroimmunol 192(1):31–39

    Article  CAS  PubMed  Google Scholar 

  33. Jenkins DD, Rollins LG, Perkel JK, Wagner CL, Katikaneni LP, Bass WT et al (2012) Serum cytokines in a clinical trial of hypothermia for neonatal hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab 32(10):1888–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Antsiferova M, Werner S (2012) The bright and the dark sides of activin in wound healing and cancer. J Cell Sci 125(17):3929–3937

    Article  CAS  PubMed  Google Scholar 

  35. Park CH, Skarra DV, Rivera AJ, Arriola DJ, Thackray VG (2014) Constitutively active FOXO1 diminishes activin induction of Fshb transcription in immortalized gonadotropes. PLoS One 9(11):e113839

    Article  PubMed  PubMed Central  Google Scholar 

  36. Iwahori Y, Saito H, Torii K, Nishiyama N (1997) Activin exerts a neurotrophic effect on cultured hippocampal neurons. Brain Res 760(1):52–58

    Article  CAS  PubMed  Google Scholar 

  37. Krieglstein K, Suter-Crazzolara C, Fischer W, Unsicker K (1995) TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J 14(4):736

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Schubert D, Kimura H, LaCorbiere M, Vaughan J, Karr D, Fischer W 1990 Activin is a nerve cell survival molecule

  39. Fann M-J, Patterson PH (1994) Neuropoietic cytokines and activin A differentially regulate the phenotype of cultured sympathetic neurons. Proc Natl Acad Sci 91(1):43–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schonhaut L, Armijo I, Schönstedt M, Alvarez J, Cordero M (2013) Validity of the ages and stages questionnaires in term and preterm infants. Pediatrics 131(5):e1468–e1e74

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Looney.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 19.4 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Looney, A.M., Ahearne, C.E., Hallberg, B. et al. Downstream mRNA Target Analysis in Neonatal Hypoxic-Ischaemic Encephalopathy Identifies Novel Marker of Severe Injury: a Proof of Concept Paper. Mol Neurobiol 54, 8420–8428 (2017). https://doi.org/10.1007/s12035-016-0330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0330-4

Keywords

Navigation